271
Views
0
CrossRef citations to date
0
Altmetric
Macromolecular Liquid Crystals

LC-elastomers: structure -property relations and concepts to improve applicability

Pages 1129-1142 | Received 19 Sep 2022, Published online: 14 Nov 2022

References

  • Ohm C, Brehmer M, Zentel R. Liquid crystalline elastomers as actuators and sensors. Adv Mater (Deerfield Beach, Fla). 2010;22(31):3366–3387.
  • Fleischmann E-K, Zentel R. Liquid-crystalline ordering as a concept in materials science: from semiconductors to stimuli-responsive devices. Angew Chem Int Ed Engl. 2013;52(34):8810–8827.
  • Bergmann GHF, Finkelmann H, Percec V, et al. Liquid-crystalline main-chain elastomers. Macromol Rapid Commun. 1997;18(5):353–360.
  • Wermter H, Finkelmann H. Liquid crystalline elastomers as artificial muscles. E-Polymers. 2001;1(1). DOI:10.1515/epoly.2001.1.1.111
  • Terentjev EM. Liquid-crystalline elastomers. J Phys. 1999;11(24):R239–257.
  • Zentel R. Liquid crystalline elastomers. Adv Mater. 1989;1(10):321–329.
  • Finkelmann H. Liquid crystalline polymers. Angew Chem Int Ed Engl. 1987;26(9):816–824.
  • Brand HR, Finkelmann H. Handbook of liquid crystals. Vol. 3, Demus D, Boodby J, Gray GW, Spiess HW Vill V, editors. Weinheim (Germany): Wiley- VCH; 1998.
  • Brömmel F, Kramer D, Finkelmann H. Preparation of liquid crystalline elastomers. In: Jeu W, editor. Liquid crystal elastomers. Advances in polymer science ser. Berlin (Heidelberg): Springer Berlin/Heidelberg; 2012. pp. 1–48.
  • Finkelmann H, Kock H-J, Rehage G. Investigations on liquid crystalline polysiloxanes 3†. Liquid crystalline elastomers — a new type of liquid crystalline material. Die Makromol Chem Rapid Commun. 1981;2(4):317–322.
  • Ohm C, Fleischmann E-K, Kraus I, et al. Control of the properties of micrometer-sized actuators from liquid crystalline elastomers prepared in a microfluidic setup. Adv Funct Mater. 2010;20(24):4314–4322.
  • Ohm C, Serra C, Zentel R. A continuous flow synthesis of micrometer-sized actuators from liquid crystalline elastomers. Adv Mater. 2009;21(47):4859–4862.
  • Sánchez-Ferrer A, Finkelmann H. Thermal and mechanical properties of new main-cHAin liquid-crystalline elastomers. Mol Cryst Liq Cryst. 2009;508(1):/[348/[710]–356/[718].
  • Thomsen DL, Keller P, Naciri J, et al. Liquid crystal elastomers with mechanical properties of a muscle. Macromolecules. 2001;34(17):5868–5875.
  • Ahir SV, Tajbakhsh AR, Terentjev EM. Self-assembled shape-memory fibers of triblock liquid-crystal polymers. Adv Funct Mater. 2006;16(4):556–560.
  • Küpfer J, Finkelmann H. Nematic liquid single crystal elastomers. Die Makromol Chem Rapid Commun. 1991;12(12):717–726.
  • Ditter D, Chen W-L, Best A, et al. MEMS analogous micro-patterning of thermotropic nematic liquid crystalline elastomer films using a fluorinated photoresist and a hard mask process. J Mater Chem C. 2017;5(47):12635–12644.
  • Waits CM, Morgan B, Kastantin M, et al. Microfabrication of 3D silicon MEMS structures using gray-scale lithography and deep reactive ion etching. Sens Actuators A. 2005;119(1):245–253.
  • Delille R, Urdaneta MG, Moseley SJ, et al. Benchtop polymer MEMS. J Microelectromech Syst. 2006;15(5):1108–1120
  • Schuhladen S, Preller F, Rix R, et al. Iris-like tunable aperture employing liquid-crystal elastomers. Adv Mater. 2014;26(42):7247–7251.
  • Petsch S, Rix R, Khatri B, et al. Smart artificial muscle actuators: liquid crystal elastomers with integrated temperature feedback. Sens Actuators A. 2015;231:44–51.
  • Petsch S, Khatri B, Schuhladen S, et al. Muscular MEMS—the engineering of liquid crystal elastomer actuators. Smart Mater Struct. 2016;25(8):085010.
  • Bushuyev OS, Aizawa M, Shishido A, et al. Shape-shifting Azo Dye polymers: towards sunlight-driven molecular devices. Macromol Rapid Commun. 2018;39(1):1700253.
  • Pozo M, Liu L, Pilz da Cunha M, et al. Direct ink writing of a light‐responsive underwater liquid crystal actuator with atypical temperature‐dependent shape changes. Adv Funct Mater. 2020;30(50):2005560.
  • Ditter D, Braun LB, Zentel R. Influences of Ortho‐Fluoroazobenzenes on liquid crystalline phase stability and 2D (Planar) actuation properties of liquid crystalline elastomers. Macromole Chem Phys. 2020;221(1):1900265.
  • Ryabchun A, Bobrovsky A. Photocontrollable deformations of polymer particles in elastic matrix. Adv Opt Mater. 2019;7(24):1901486.
  • Pilz da Cunha M, Debije MG, Schenning APHJ. Bioinspired light-driven soft robots based on liquid crystal polymers. Chem Soc Rev. 2020;49(18):6568–6578.
  • Braun LB, Zentel R. Functional liquid crystalline particles and beyond. Liq Cryst. 2019;46(13–14):2023–2041.
  • Honaker LW, Vats S, Anyfantakis M, et al. Elastic sheath–liquid crystal core fibres achieved by microfluidic wet spinning. J Mater Chem C. 2019;7(37):11588–11596.
  • Urbanski M, Reyes CG, Noh J, et al. Liquid crystals in micron-scale droplets, shells and fibers. J Phys. 2017;29(13):133003.
  • Jampani VSR, Mulder DJ, Sousa KRD, et al. Micrometer-scale porous buckling shell actuators based on liquid crystal networks. Adv Funct Mater. 2018;28(31):1801209.
  • Ohm C, Kapernaum N, Nonnenmacher D, et al. Microfluidic synthesis of highly shape-anisotropic particles from liquid crystalline elastomers with defined director field configurations. J Am Chem Soc. 2011;133(14):5305–5311.
  • Hessberger T, Braun LB, Zentel R. Interfacial self-assembly of amphiphilic dual temperature responsive actuating janus particles. Adv Funct Mater. 2018;28(21):1800629.
  • Ditter D, Blümler P, Klöckner B, et al. Microfluidic synthesis of liquid crystalline elastomer particle transport systems which can be remote‐controlled magnetically. Adv Funct Mater. 2019;29(29):1902454.
  • Ni B, Liu G, Zhang M, et al. Customizable sophisticated three-dimensional shape changes of large-size liquid crystal elastomer actuators. ACS Appl Mater Interfaces. 2021;13(45):54439–54446.
  • Saed MO, Gablier A, Terentjev EM. ExchangeabLe liquid crystalline elastomers and their applications. Chem Rev. 2022;122(5):4927–4945.
  • Liu X, Pan X, Debije MG, et al. Programmable liquid crystal elastomer microactuators prepared via thiol-ene dispersion polymerization. Soft Matter. 2020;16(21):4908–4911.
  • Wang L, Liu W, Guo L-X, et al. A room-temperature two-stage thiol–ene photoaddition approach towards monodomain liquid crystalline elastomers. Polym Chem. 2017;8(8):1364–1370.
  • McBride MK, Martinez AM, Cox L, et al. A readily programmable, fully reversible shape-switching material. Sci Adv. 2018;4(8):eaat4634.
  • Yu L, Shahsavan H, Rivers G, et al. Actuators: programmable 3D shape changes in liquid crystal polymer networks of uniaxial orientation (Adv. Funct. Mater. 37/2018). Adv Funct Mater. 2018;28(37):1870259.
  • Pei Z, Yang Y, Chen Q, et al. Mouldable liquid-crystalline elastomer actuators with exchangeable covalent bonds. Nat Mater. 2014;13(1):36–41.
  • White TJ, Broer DJ. Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers. Nat Mater. 2015;14(11):1087–1098.
  • Yu Y, Maeda T, Mamiya J-I, et al. Photomechanical effects of ferroelectric liquid-crystalline elastomers containing azobenzene chromophores. Angew Chem (Int Ed in English). 2007;46(6):881–883.
  • van Oosten CL, Bastiaansen CWM, Broer DJ. Printed artificial cilia from liquid-crystal network actuators modularly driven by light. Nat Mater. 2009;8(8):677–682.
  • Troyano J, Carné-Sánchez A, Maspoch D. Programmable self-assembling 3D architectures generated by patterning of swellable MOF-based composite films. Adv Mater (Deerfield Beach, Fla). 2019;31(21):e1808235.
  • Sun M, Wang P, Zheng G, et al. Multi-stimuli-responsive actuator based on bilayered thermoplastic film. Soft Matter. 2022;18(27):5052–5059.
  • Zentel R, Schmidt GF, Meyer J, et al. X-ray investigations of linear and cross-linked liquid-crystalline main chain and combined polymers. Liq Cryst. 1987;2(5):651–664.
  • Boeffel C, Spiess HW, Hisgen B, et al. Molecular order of spacer and main chain in polymeric side-group liquid crystals. Die Makromol Chem Rapid Commun. 1986;7(12):777–783.
  • Noirez L, Keller P, Cotton JP. On the structure and the chain conformation of side-chain liquid crystal polymers. Liq Cryst. 1995;18(1):129–148.
  • Kaufhold W, Finkelmann H, Brand HR. Nematic elastomers, 1. Effect of the spacer length on the mechanical coupling between network anisotropy and nematic order. Makromol Chem. 1991;192(11):2555–2579.
  • Leroux N, Keller P, Achard MF, et al. Small Angle Neutron Scattering experiments on “side-on fixed” liquid crystal polyacrylates. J Phys. 1993;II(8):1289–1296.
  • Ohm C, Brehmer M, Zentel R. Liquid crystal elastomers: materials and applications. Berlin (Heidelberg): Springer; 2012. eng. (Advances in Polymer Science Ser; v.250).
  • Guo W, Davis FJ, Mitchell GR. Side-chain liquid-crystal copolymers and elastomers with a null coupling between the polymer backbone and the mesogenic groups. Polymer. 1994;35(14):2952–2961.
  • Chiellini E, Laus M. Handbook of liquid crystals set. Vol. 3. Weinheim (Germany): Wiley-VCH Verlag GmbH; 1998. p. 26–51.
  • Yoon DY, Bruckner S, Volksen W, et al. Configurational characteristics and nematic order of semiflexible thermotropic polymers. Faraday Discuss Chem Soc. 1985;79:41.
  • Zentel R. LC‐polymers and smectic phases with special substructures/nanophase segregation. Macromole Chem Phys. 2021;222(20):2100216.
  • Wilbert G, Zentel R. Liquid crystalline main-chain polymers containing the ferrocene unit as a side group. Macromole Chem Phys. 1996;197(10):3259–3268.
  • Wilbert G, Traud S, Zentel R. Liquid crystalline main chain polymers containing the ferrocene unit as a side group, 2. Variation of the spacer length. Macromole Chem Phys. 1997;198(12):3769–3785.
  • Vix A, Stocker W, Stamm M, et al. Chain folding in liquid-crystalline main-cHain polymers with a Smectic phase. Macromolecules. 1998;31(26):9154–9159.
  • Sapich B, Vix ABE, Rabe JP, et al. Ordering and dewetting in spin-coated films of a liquid crystalline main chain polymer. Thin Solid Films. 2006;514(1–2):165–173.
  • Yang R, Ding L, Chen W, et al. Chain folding in main-chain liquid crystalline polyester with strong π–π interaction: an efficient β-nucleating agent for isotactic polypropylene. Macromolecules. 2017;50(4):1610–1617.
  • Orodepo GO, Gowd EB, Ramakrishnan S. Periodically spaced side-chain liquid crystalline polymers. Macromolecules. 2020;53(20):8775–8786.
  • Orodepo GO, Gowd EB, Ramakrishnan S. Main-chain liquid crystalline polymers bearing periodically grafted folding elements. Polym Chem. 2021;12(7):1050–1059.
  • Beyer P, Terentjev EM, Zentel R. Monodomain liquid crystal main chain elastomers by photocrosslinking. Macromol Rapid Commun. 2007;28(14):1485–1490.
  • Rössle M, Braun L, Schollmeyer D, et al. Differences between smectic homo‐ and co‐polysiloxanes as a consequence of microphase separation. Liq Cryst. 2005;32(5):533–538.
  • Poths H, Zentel R. Structure–property relationships of ‘diluted’ ferroelectric polysiloxanes. Liq Cryst. 1994;16(5):749–767.
  • Vennes M, Zentel R, Rössle M, et al. Smectic liquid-crystalline colloids by miniemulsion techniques. Adv Mater. 2005;17(17):2123–2127.
  • Brehmer M, Zentel R, Gießbtelmann F, et al. Coupling of liquid crystalline and polymer network properties in LC-elastomers. Liq Cryst. 1996;21(4):589–596.
  • Brehmer M, Zentel R. Ferroelectric liquid-crystalline elastomers with short switching times. Macromol Rapid Commun. 1995;16(9):659–662.
  • Brehmer M, Zentel R, Wagenblast G, et al. Ferroelectric liquid-crystalline elastomers. Macromole Chem Phys. 1994;195(6):1891–1904.
  • Rössle M, Zentel R, Lagerwall JPF, et al. Ferroelectric polysiloxane liquid crystals with ‘de Vries’-type smectic A*–smectic C* transitions. Liq Cryst. 2004;31(6):883–887.
  • Beyer P, Zentel R. Photoswitchable smectic liquid-crystalline elastomers. Macromol Rapid Commun. 2005;26(11):874–879.
  • Schüring H, Stannarius R, Tolksdorf C, et al. Liquid crystal elastomer balloons. Macromolecules. 2001;34(12):3962–3972.
  • Aksenov V, Bläsing J, Stannarius R, et al. Strain‐induced compression of smectic layers in free‐standing liquid crystalline elastomer films. Liq Cryst. 2005;32(7):805–813.
  • Cresta V, Romano G, Kolpak A, et al. Nanostructured composites based on liquid-crystalline elastomers. Polymers. 2018;10(7):773.
  • Petsch S, Rix R, Schuhladen S, et al., editors. Tunable micro-optics: liquid crystal elastomer micro-optics. Cambridge: Cambridge University Press; 2016.
  • Marshall JE, Ji Y, Torras N, et al. Carbon-nanotube sensitized nematic elastomer composites for IR-visible photo-actuation. Soft Matter. 2012;8(5):1570–1574.
  • Camargo CJ, Campanella H, Marshall JE, et al. Batch fabrication of optical actuators using nanotube–elastomer composites towards refreshable Braille displays. J Micromech Microeng. 2012;22(7):075009.
  • Braun LB, Linder TG, Hessberger T, et al. Influence of a crosslinker containing an Azo Group on the actuation properties of a photoactuating LCE system. Polymers. 2016;8(12):435.
  • Ikeda T, Tsutsumi O. Optical switching and image storage by means of azobenzene liquid-crystal films. Science. 1995;268(5219):1873–1875.
  • Harris KD, Cuypers R, Scheibe P, et al. Large amplitude light-induced motion in high elastic modulus polymer actuators. J Mater Chem. 2005;15(47):5043.
  • Vantomme G, Gelebart AH, Broer DJ, et al. A four-blade light-driven plastic mill based on hydrazone liquid-crystal networks. Tetrahedron. 2017;73(33):4963–4967.
  • Bléger D, Schwarz J, Brouwer AM, et al. O-Fluoroazobenzenes as readily synthesized photoswitches offering nearly quantitative two-way isomerization with visible light. J Am Chem Soc. 2012;134(51):20597–20600.
  • Gelebart AH, Mc Bride M, Schenning APHJ, et al. Photoresponsive fiber array: toward mimicking the collective motion of Cilia for transport applications. Adv Funct Mater. 2016;26(29):5322–5327.
  • Wani OM, Verpaalen R, Zeng H, et al. An artificial nocturnal flower via humidity-gated photoactuation in liquid crystal networks. Adv Mater. 2019;31(2):e1805985.
  • Zeng H, Wasylczyk P, Wiersma DS, et al. Light robots: bridging the gap between microrobotics and photomechanics in soft materials. Adv Mater. 2018;30(24):e1703554.
  • Ube T, Ikeda T. Photomobile polymer materials with crosslinked liquid-crystalline structures: molecular design, fabrication, and functions. Angew Chem Int Ed Engl. 2014;53(39):10290–10299.
  • Hogan PM, Tajbakhsh AR, Terentjev EM. UV manipulation of order and macroscopic shape in nematic elastomers. Phys Rev E: Stat Nonlinear Soft Matter Phys. 2002;65(4 Pt 1):041720.
  • Yamada M, Kondo M, Mamiya J-I, et al. Photomobile polymer materials: towards light-driven plastic motors. Angew Chem Int Ed Engl. 2008;47(27):4986–4988.
  • Yamada M, Kondo M, Miyasato R, et al. Photomobile polymer materials—various three-dimensional movements. J Mater Chem. 2009;19(1):60–62.
  • Palagi S, Mark AG, Reigh SY, et al. Structured light enables biomimetic swimming and versatile locomotion of photoresponsive soft microrobots. Nat Mater. 2016;15(6):647–653.
  • Braun LB, Hessberger T, Zentel R. Microfluidic synthesis of micrometer-sized photoresponsive actuators based on liquid crystalline elastomers. J Mater Chem C. 2016;4(37):8670–8678.
  • Braun LB, Hessberger T, Pütz E, et al. Actuating thermo- and photo-responsive tubes from liquid crystalline elastomers. J Mater Chem C. 2018;6(34):9093–9101.
  • Weis P, Wang D, Wu S. Visible-light-responsive azopolymers with inhibited π–π stacking enable fully reversible photopatterning. Macromolecules. 2016;49(17):6368–6373.
  • Kumar K, Knie C, Bléger D, et al. A chaotic self-oscillating sunlight-driven polymer actuator. Nat Commun. 2016;7(1):11975.
  • Knie C, Utecht M, Zhao F, et al. Ortho-Fluoroazobenzenes: visible light switches with very long-lived Z isomers. Chemistry. 2014;20(50):16492–16501.
  • Cabrera I, Dittrich A, Ringsdorf H. Thermally irreversible photochromic liquid crystal polymers. Angew Chem Int Ed Engl. 1991;30(1):76–78.
  • Baun O, Blümler P. Permanent magnet system to guide superparamagnetic particles. J Magn Magn Mater. 2017;439:294–304.
  • Farre‐kaga HJ, Saed MO, Terentjev EM. Dynamic pressure sensitive adhesion in nematic phase of liquid crystal elastomers. Adv Funct Mater. 2022;32(12):2110190.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.