1,459
Views
4
CrossRef citations to date
0
Altmetric
Mathematical Modelling, Symmetry and Topology

Running streams of a ferroelectric nematic liquid crystal on a lithium niobate surface

ORCID Icon, , ORCID Icon, ORCID Icon, , , , & ORCID Icon show all
Pages 1478-1485 | Received 09 Sep 2022, Accepted 17 Dec 2022, Published online: 04 Jan 2023

References

  • Choi K, AHC N, Fobel R, et al. Digital microfluidics, Annu. Rev Anal Chem. 2012;5(1):413–440. DOI:10.1146/annurev-anchem-062011-143028
  • Samiei E, Tabrizian M, Hoorfar M. A review of digital microfluidics as portable platforms for lab-on a-chip applications. Lab Chip. 2016;16(13):2376–2396.
  • Battat S, Weitz DA, Whitesides GM. An outlook on microfluidics: the promise and the challenge. Lab Chip. 2022;22(3):530–536.
  • Chiou PY, Moon H, Toshiyoshi H, et al. Light actuation of liquid by optoelectrowetting. Sens Actuators A. 2003;104(3):222–228. DOI:10.1016/S0924-4247(03)00024-4
  • Lv JA, Liu YY, Wei J, et al. Photocontrol of fluid slugs in liquid crystal polymer microactuators. Nature. 2016;537(7619):179–184. DOI:10.1038/nature19344
  • Palma C, Deegan RD. Droplet translation actuated by photoelectrowetting. Langmuir. 2018;34(10):3177–3185.
  • Zaltron A, Ferraro D, Meggiolaro A, et al. Optofluidic platform for the manipulation of water droplets on engineered LiNbO3 surfaces. Adv Mater Interfaces. 2022;9(22): 2200345-1–11. DOI:10.1002/admi.202200345.
  • Volk T, Wöhlecke M. Lithium niobate: defects, photorefraction and ferroelectric switching. RH Osgood, RM Parisi J Jr, et al., editors. Berlin/Heidelberg, Germany: Springer; 2009.
  • Günter P, Huignard JP, editors. Photorefractive materials and their applications I. New York: Springer Series in Optical Sciences (SSOS, volume 113); 2006.
  • Kong Y, Bo F, Wang W, et al. Recent progress in lithium niobate: optical damage, defect simulation, and on-chip devices. Adv Mater. 2020;32(3): 1806452-1–14. DOI:10.1002/adma.201806452.
  • Sturmann B, Fridkin V. Photovoltaic and photorefractive effects in noncentrosymmetric materials. Philadelphia: Gordon and Breach Science Publishers; 1992.
  • Schirmer OF, Imlau M, Merschjann C. Bulk photovoltaic effect of LiNbO3:fe and its small-polaron-based microscopic interpretation. Phys Rev B. 2011;83(16): 165106-1–13. DOI:10.1103/PhysRevB.83.165106.
  • Kukhtarev N, Kukhtareva T, Geng J, et al. Photogalvanic/Pyroelectric power conversion and self-pulsing of electro-wetting of LC droplet on lithium niobate (LN)-crystal. J Mol Liq. 2018;267:187–191.
  • Arregui C, Ramiro JB, Alcázar A, et al. Optoelectronic tweezers under arbitrary illumination patterns: theoretical simulations and comparison to experiment. Opt Express. 2014;22(23):29099. DOI:10.1364/OE.22.029099
  • Zhang X, Wang J, Tang B, et al. Optical trapping and manipulation of metallic micro/nanoparticles via photorefractive crystals. Opt Exp. 2009;17(12):9981–9988. DOI:10.1364/OE.17.009981
  • Carrascosa M, García-Cabañes A, Jubera M, et al. LiNbO3: a photovoltaic substrate for massive parallel manipulation and patterning of nano-objects. Appl Phys Rev [Internet]. 2015 [cited 2022 Nov 21];2(4):040605. DOI:10.1063/1.4929374
  • Fan BL, Li FF, Chen LP, et al. Photovoltaic manipulation of water microdroplets on a hydrophobic LiNbo3 substrate. Phys Rev Appl. 2017;7(6): 064010-1–9. DOI:10.1103/PhysRevApplied.7.064010.
  • Puerto A, Méndez A, Arizmendi L, et al. Optoelectronic manipulation, trapping, splitting, and merging of water droplets and aqueous biodroplets based on the bulk photovoltaic effect. Phys Rev Appl. 2020;14(2): 024046-1–12. DOI:10.1103/PhysRevApplied.14.024046.
  • Tang X, Li W, Wang QL. Furcated droplet motility on crystalline surfaces. Nat Nanotechnol. 2021;16(10):1106–1112.
  • Meggiolaro A, Cremaschini S, Ferraro D, et al. Determination of the dielectrophoretic force induced by the photovoltaic effect on lithium niobate. Micromach. 2022;13(2): 316-1–9. DOI:10.3390/mi13020316.
  • Saoncella S. Optical control of droplet motion on Fe-doped lithium niobate crystals. Edizioni Accademiche Italiane. [cited 2020 Oct 19].
  • García-Cabañes A, Blázguez-Castro A, Arizmendi L, et al. Recent achievements on photovoltaic optoelectronic tweezers based on lithium niobate. Crystals. 2018;8(2): 65-1–15. DOI:10.3390/cryst8020065.
  • Carns JL, Cook G, Saleh MA, et al. Self-activated liquid-crystal cells with photovoltaic substrates. Opt Lett. 2006;31(7):993–995. DOI:10.1364/OL.31.000993
  • Carns JL, Cook G, Saleh MA, et al. Photovoltaic field-induced self-phase modulation of light in liquid crystal cells. Mol Cryst Liq Cryst. 2006;453(1):83–92. DOI:10.1080/15421400600651757
  • Lucchetti L, Kushnir K, Zaltron A, et al. Light controlled phase shifter for optofluidics. Opt Lett. 2016;41(2):333–335. DOI:10.1364/OL.41.000333
  • Lucchetti L, Kushnir K, Zaltron A, et al. Liquid crystal cells based on photovoltaic substrates. J Eur Opt Soc. 2016;11: 16007-1–4. DOI:10.2971/jeos.2016.16007
  • Lucchetti L, Kushnir K, Reshetnyak V, et al. Light-induced electric field generated by photovoltaic substrates investigated through liquid crystal reorientation. Opt Mater. 2017;73:64–69.
  • Habibpourmoghadam A, Lucchetti L, Evans DR, et al. Laser-induced erasable patterns in a N* liquid crystal on an iron doped lithium niobate surface. Opt Express. 2017;25(21):26148–26159. DOI:10.1364/OE.25.026148
  • Habibpourmoghadam A, Jiao L, Reshetnyak V, et al. Optical manipulation and defect creation in a liquid crystal on a photoresponsive surface. Phys Rev E. 2017;96(2): 022701-1–9. DOI:10.1103/PhysRevE.96.022701
  • Lucchetti L, Reshetnyak V. Hybrid photosensitive structures based on nematic liquid crystals and lithium niobate substrates. Opt Data Process Storage. 2018;4(1):14–21.
  • Schafforz SL, Yang Y, Lorenz A. Defect formation in N* LCs via photovoltaic fields: impact of surface treatment. Liq Cryst. 2019;46(13–14):2013–2022.
  • Bonfadini S, Ciciulla F, Criante L, et al. Optofluidic platform using liquid crystals in lithium niobate microchannel. Sci Rep. 2019;9(1): 1062-1–9. DOI:10.1038/s41598-018-37351-7.
  • Habibpourmoghadam A. Theoretical prediction of umbilics creation in nematic liquid crystals with positive dielectric anisotropy. ACS Omega. 2019;4(25):21459–21468.
  • Schafforz SL, Nordendorf G, Nava G, et al. Formation of relocatable umbilical defects in a liquid crystal with positive dielectric anisotropy induced via photovoltaic fields. J Mol Liq. 2020;307: 112963-1–8. DOI:10.1016/j.molliq.2020.112963
  • Ciciulla F, Zaltron A, Zamboni R, et al. Optofluidic platform based on liquid crystals in X-Cut lithium niobate: thresholdless all-optical response. Crystals. 2021;11(8): 908-1–11. DOI:10.3390/cryst11080908
  • Bharath SC, Pimputkar KR, Pronschinske AM, et al. Liquid crystal deposition on poled, single crystalline lithium niobate. Appl Surf Sci. 2008;254(7):2048–2053. DOI:10.1016/j.apsusc.2007.08.040
  • Merola F, Grilli S, Coppola S, et al. Reversible fragmentation and self-assembling of nematic liquid crystal droplets on functionalized pyroelectric substrates. Adv Funct Mater. 2012;22(15):3267–3272. DOI:10.1002/adfm.201200323
  • Merola F, Grilli S, Coppola S, et al. Manipulating liquid crystals by pyroelectric effect. Mol Cryst Liq Cryst. 2013;572(1):66–71. DOI:10.1080/15421406.2012.763212
  • Gennes P, Prost J. The physics of liquid crystals. 2nd ed. Oxford: Clarendon Press; 1993.
  • Nishikawa H, Shiroshita K, Higuchi H, et al. A fluid liquid-crystal material with highly polar order. Adv Mater. 2017;29(43): 1702354-1–8. DOI:10.1002/adma.201702354
  • Mandle RJ, Cowling SJ, Goodby JW. Rational design of rod-like liquid crystals exhibiting two nematic phases. Chem Eur J. 2017;23(58):14554–14562.
  • Mandle RJ, Cowling SJ, Goodby JW. A nematic to nematic transformation exhibited by a rod-like liquid crystal. Phys Chem Chem Phys. 2017;19(18):11429–11435.
  • Mertelj A, Cmok L, Sebastián N, et al. Splay Nematic Phase. Phys Rev X [Internet]. 2018 [cited 2022 Nov 21];8(4):041025. DOI:10.1103/PhysRevX.8.041025
  • Sebastián N, Cmok L, Mandle RJ, et al. Ferroelectric-ferroelastic phase transition in a nematic liquid crystal. Phys Rev Lett. 2020;124(3): 037801-1–6. DOI:10.1103/PhysRevLett.124.037801.
  • Chen X, Korblova E, Dong D, et al. First principles experimental demonstration of ferroelectricity in a thermotropic nematic liquid crystal: polar domains and striking electro-optics. Proc Natl Acad Sci U S A. 2020;117(25):14021–14031. DOI:10.1073/pnas.2002290117
  • Sebastián N, Mertelj A, Čopič M. Ferroelectric nematic liquid crystalline phases. Phys Rev E. 2022;106(2): 021001-1–27. DOI:10.1103/PhysRevE.106.021001.
  • Máthé MT, Buka Á, Jákli A, et al. Ferroelectric nematic liquid crystal thermomotor. Phys Rev E. 2022;105(5): 052701-1–6. DOI:10.1103/PhysRevE.105.L052701.
  • Ballman AA. Growth of piezoelectric and ferroelectric materials by the czochralski technique. J Am Ceram Soc. 1965;48(2):112–113.
  • Andelman D, Rosensweig RE. The phenomenology of modulated phases: from magnetic solids and fluids to organic films and polymers. Tsori Y, Steiner U, editors. Danvers: World Scientific; 2009.
  • Deb R, Sarma B, Dalal A. Magnetowetting dynamics of sessile ferrofluid droplets: a review. Soft Matter. 2022;18(12):2287–2324.
  • Barboza R, Marni S, Ciciulla F, et al. Explosive electrostatic instability of ferroelectric liquid droplets on ferroelectric solid surfaces. Proc Natl Acad Sci, USA. 2022;119(32): 2207858119-1–7. DOI:10.1073/pnas.2207858119
  • Muñoz-Martínez JF, Alcázar Á, Carrascosa M. Time evolution of photovoltaic fields generated by arbitrary light patterns in z-cut LiNbO3:fe: application to optoelectronic nanoparticle manipulation. Opt Express. 2020;28(12):18085–18102.
  • Collins RT, Sambath K, Harris MT, et al. Universal scaling laws for the disintegration of electrified drops. Proc Natl Acad Sci, USA. 2013;110(13):4905–4910. DOI:10.1073/pnas.1213708110
  • Nolan JJ. The breaking of water-drops by electric fields. Proc R Ir Acad Sect A. 1926;37:28–39.
  • Macky WA. Some investigations on the deformation and breaking of water drops in strong electric fields. Proc R Soc Lond A. 1931;133:565–587.
  • Taylor GI. Disintegration of water drops in an electric field. Proc R Soc Lond A. 1964;280:383–397.
  • Collins RT, Jones JJ, Harris MT, et al. Electrohydrodynamic tip streaming and emission of charged drops from liquid cones. Nat Phys. 2008;4(2):149–154. DOI:10.1038/nphys807
  • Máthé MT, Farkas B, Péter L, et al. Electric field-induced interfacial instability in a ferroelectric nematic liquid crystal [Internet]. 2022. Available from: https://arxiv.org/abs/2210.14329
  • Drevensek-Olenik I. DIO on LN:Fe. Figshare media; 2022. Available from: https://figshare.com/articles/media/DIO_on_LN_Fe/21070744