186
Views
0
CrossRef citations to date
0
Altmetric
Confined Liquid Crystals

Tuneable optical diffractive structures from liquid crystalline materials incorporated into periodic polymeric scaffolds

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1229-1242 | Received 20 Oct 2022, Accepted 17 Dec 2022, Published online: 04 Jan 2023

References

  • Rogers AJ. Essentials of optoelectronics. 1st ed. New York (NY): Chapman & Hall; 1997.
  • Winzer PJ, Essiambre RJ. High-speed and high-capacity optical transmission systems. In: Nakazawa M, Kikuchi K Miyazaki T, editors. High spectral density optical communication technologies. Berlin: Springer; 2010. p. 103–127.
  • Gnauck AH, Tkach RW, Chraplyvy AR, et al. High-capacity optical transmission systems. J Light Technol. 2008;26(9):1032–1045. DOI:10.1109/JLT.2008.922140
  • Zhang J, Yu J, Chi N. Generation and transmission of 512-Gb/s quad-carrier digital super-Nyquist spectral shaped signal. Opt Express. 2013;21(25):31212–31217.
  • Nakazawa M, Hirooka T, Ruan P, et al. Ultrahigh-speed “orthogonal” TDM transmission with an optical Nyquist pulse train. Opt Express. 2012;20(2):1129–1140. DOI:10.1364/OE.20.001129
  • Zhang J, Yu J, Fang Y, et al. High speed all optical Nyquist signal generation and full-band coherent detection. Sci Rep. 2014;4(1):6156. DOI:10.1038/srep06156
  • Lin J, Yuan XC, Tao SH, et al. Multiplexing free-space optical signals using superimposed collinear orbital angular momentum states. Appl Opt. 2007;46(21):4680–4685. DOI:10.1364/AO.46.004680
  • Wang J, Yang JY, Fazal IM, et al. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat Photonics. 2012;6:488–496.
  • Ivankovski Y, Mendlović D. High-rate–long-distance fiber-optic communication based on advanced modulation techniques. Appl Opt. 1999;38(26):5533–5540.
  • Kumar S, Deen MJ. Fiber optic communications: fundamentals and applications. Hoboken (NJ): Wiley; 2014.
  • Liang X, Kumar S, Shao J. Ideal optical backpropagation of scalar NLSE using dispersion-decreasing fibers for WDM transmission. Opt Express. 2013;21(23):28668–28675.
  • Oshima N, Hashimoto K, Suzuki S, et al. Terahertz wireless data transmission with frequency and polarization division multiplexing using resonant-tunneling-diode oscillators. IEEE Trans Terahertz Sci Technol. 2017;7(5):593–598. DOI:10.1109/TTHZ.2017.2720470
  • Chen B, Wu Y, Han M, et al. A novel architecture of millimeter-wave full-duplex radio-over-fiber system with source-free BS based on polarization division multiplexing and wavelength division multiplexing. Prog Electromagn Res. 2018;80:103–110.
  • Michailow N, Matthe M, Gaspar IS, et al. Generalized frequency division multiplexing for 5th generation cellular networks. IEEE Trans Commun. 2014;62(9):3045–3061. DOI:10.1109/TCOMM.2014.2345566
  • Komorowski P, Czerwińska P, Kaluza M, et al. Frequency division multiplexing of terahertz waves realized by diffractive optical elements. Appl Sci. 2021;11(14):6246. DOI:10.3390/app11146246
  • Ivanovich D, Zhao C, Zhang X, et al. Chip-to-chip optical data communications using polarization division multiplexing. Proceedings of 2020 IEEE High Performance Extreme Computing Conference (HPEC); 2020 Sep 22–24; Waltham (MA)/Piscataway (NJ): IEEE; 2020. p. 1–8.
  • Karimi E, Marrucci L, de Lisio C, et al. Time division multiplexing of the orbital angular momentum of light. Opt Lett. 2012;37(2):127–129. DOI:10.1364/OL.37.000127
  • Zhang J, Yu J, Dong Z, et al. Transmission of 20×440-Gb/s super-Nyquist-filtered signals over 3600 km based on single-carrier 110-GBaud PDM QPSK with 100-GHz grid. Proceedings of the Optical Fiber Communication Conference 2014; Mar 09-13; San Francisco (CA)/Washington (DC): Optica Publishing Group; 2014. paper Th5B.3.
  • Zola RS, Bisoyi HK, Wang H, et al. Dynamic control of light direction enabled by stimuli-responsive liquid crystal gratings. Adv Mater. 2019;31(7):1806172. DOI:10.1002/adma.201806172
  • Chen R, Lee YH, Zhan T, et al. Multistimuli-responsive self-organized liquid crystal Bragg gratings. Adv Opt Mater. 2019;7(9):1900101. DOI:10.1002/adom.201900101
  • Huang SY, Huang BY, Kang CC, et al. Diffraction and polarization properties of electrically–tunable nematic liquid crystal grating. Polymers. 2020;12(9):1929. DOI:10.3390/polym12091929
  • Bošnjaković D, Fleisch M, Zhang X, et al. Electrically tuneable optical diffraction gratings based on a polymer scaffold filled with a nematic liquid crystal. Polymers. 2021;13(14):2292. DOI:10.3390/polym13142292
  • Li SZ, Zhao ZW, Wang CM, et al. Electrically tunable photo-aligned two-dimensional liquid crystal polarisation grating. Liq Cryst. 2019;46(8):1175–1182. DOI:10.1080/02678292.2018.1543781
  • Naseri R, Shoarinejad S. Polarization grating based on liquid crystals doped with ferroelectric nanoparticles. Liq Cryst. 2020;47(12):1863–1875.
  • Sun Z, Yuan Z, Nikita A, et al. Fast-switchable, high diffraction-efficiency ferroelectric liquid crystal fibonacci grating. Opt Express. 2021;29(9):13978–13986. DOI:10.1364/OE.420975
  • Shoarinejad S, Mohammadi Siahboomi R, Ghazavi M. Theoretical studies of the influence of nanoparticle dopants on the ferroelectric properties of a ferroelectric liquid crystal. J Mol Liq. 2018;254:312–321.
  • Shoarinejad S, Sadeghisahebzad A. Threshold properties of nanodoped surface stabilized ferroelectric liquid crystals under electric and magnetic fields. J Mol Liq. 2016;220:1033–1041.
  • Zhang L, Fan YX, Liu H, et al. A magnetically tunable non-Bragg defect mode in a corrugated wave-guide filled with liquid crystals. Phys Lett A. 2018;382(14):1000–1005. DOI:10.1016/j.physleta.2018.02.017
  • Cao Y, Wang PX, D’Acierno F, et al. Tunable diffraction gratings from bio-sourced lyotropic liquid crystals. Adv Mater. 2020;32(19):1907376. DOI:10.1002/adma.201907376
  • Bošnjaković D, Sebastián N, Drevenšek-Olenik I. Magnetically tunable liquid crystal-based optical diffraction gratings. Polymers. 2020;12(10):2355.
  • Stewart IW. The static and dynamic continuum theory of liquid crystals: a mathematical introduction. Boca Raton (FL): CRC Press; 2004.
  • Mertelj A, Lisjak D, Drofenik M, et al. Ferromagnetism in suspensions of magnetic platelets in liquid crystal. Nature. 2013;504(7479):237–241. DOI:10.1038/nature12863
  • Ji Z, Zhang X, Shi B, et al. Compartmentalized liquid crystal alignment induced by sparse polymer ribbons with surface relief gratings. Opt Lett. 2016;41(2):336–339. DOI:10.1364/OL.41.000336
  • Gao S, Fleisch M, Rupp RA, et al. Magnetically tunable optical diffraction gratings based on a ferromagnetic liquid crystal. Opt Express. 2019;27(6):8900–8911. DOI:10.1364/OE.27.008900
  • Fleisch M, Gao S, Bošnjaković D, et al. Laser-written polymeric scaffolds for micropatterned liquid crystal alignment. Liq Cryst. 2019;46(13–14):2075–2084. DOI:10.1080/02678292.2019.1631970
  • Berreman DW. Alignment of liquid crystals by grooved surfaces. Mol Cryst Liq Cryst. 1973;23(3–4):215–231.
  • Stöhr J, Samant MG. Liquid crystal alignment by rubbed polymer surfaces: a microscopic bond orientation model. J Electron Spectrosc Relat Phenom. 1999;98–99:189–207.
  • Solodar A, Cerkauskaite A, Drevinskas R, et al. Ultrafast laser induced nanostructured ITO for liquid crystal alignment and higher transparency electrodes. Appl Phys Lett. 2018;113(8):081603. DOI:10.1063/1.5040692
  • Pleiner H, Jarkova E, Muler HW, et al. Landau description of ferrofluid to ferronematic phase transition. Magnetohydrodynamics. 2001;37:254–260.
  • De Gennes PG, Prost J. The physics of liquid crystals. 2nd ed. Oxford: Oxford University Press; 1993.
  • Rapini A, Papoular M. Distorsion d’une lamelle nématique sous champ magnétique conditions d’ancrage aux parois. J Phys Coll. 1969;30(C4):54–56.
  • Sebastián N, Osterman N, Lisjak D, et al. Director reorientation dynamics of ferromagnetic nematic liquid crystals. Soft Matter. 2018;14(35):7180–7189. DOI:10.1039/C8SM01377B
  • Mertelj A, Osterman N, Lisjaka D, et al. Magneto-optic and converse magnetoelectric effects in a ferromagnetic liquid crystal. Soft Matter. 2014;10(45):9065–9072. DOI:10.1039/C4SM01625D
  • Chao PCP, Kao YY, Hsu CJ. A new negative liquid crystal lens with multiple ring electrodes in unequal widths. IEEE Photonics J. 2012;4(1):250–266.
  • Chen H, Zhu R, Zhu J, et al. A simple method to measure the twist elastic constant of a nematic liquid crystal. Liq Cryst. 2015;42(12):1738–1742. DOI:10.1080/02678292.2015.1070925
  • Li J, Wen CH, Gauza S, et al. Refractive indices of liquid crystals for display applications. J Disp Technol. 2005;1(1):51–61. DOI:10.1109/JDT.2005.853357
  • Gaylord TK, Moharam MG. Thin and thick gratings: terminology clarification. Appl Opt. 1981;20(19):3271–3273.
  • Moharam MG, Gaylord TK. Rigorous coupled-wave analysis of planar-grating diffraction. J Opt Soc Am. 1981;71:811–818.
  • Kajtar G Electromagnetic properties of double-periodic structures [ dissertation]. Bratislava: Slovak University of Technology in Bratislava; 2014.
  • Pendry JB. Photonic band structures. J Mod Optics. 1994;41(2):209–229.
  • Liu V, Fan S. S4: a free electromagnetic solver for layered periodic structures. Comput Phys Commun. 2012;183(10):2233–2244.
  • MicroChem. SU-8 3000 data sheet. [Last visited 2022 Sep 20]. https://kayakuam.com/sitemap/.
  • Salazar-Miranda D, Castillón FF, Sánchez-Sánchez JJ, et al. Refractive index modulation of SU-8 polymer optical waveguides by means of hybrid photothermal process. Rev Mex Ing Quím. 2010;9:85–90.
  • Potisk T, Mertelj A, Sebastián N, et al. Magneto-optic dynamics in a ferromagnetic nematic liquid crystal. Phys Rev E. 2018;97(1):012701. DOI:10.1103/PhysRevE.97.012701
  • Li W, Cui W, Zhang W, et al. Characterisation of POLICRYPS structures assembled through a two-step process. Liq Cryst. 2014;41(9):1315–1322. DOI:10.1080/02678292.2014.919671

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.