528
Views
4
CrossRef citations to date
0
Altmetric
Novel Applications

Fast photo- and electro-optical switching of the polymer- stabilised cholesteric liquid crystal composite prepared by the template method

, , ORCID Icon, ORCID Icon & ORCID Icon
Pages 1563-1572 | Received 14 Oct 2022, Published online: 05 Jan 2023

References

  • Bisoyi HK, Li Q. Liquid crystals: versatile self-organized smart soft materials. Chem Rev. 2022;122(5):4887–4926.
  • Li Q, editor. Functional organic and hybrid nanostructured materials fabrication, properties, and applications. Weinheim, Germany: Wiley-VCH; 2018.
  • White T, Broer D. Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers. Nature Mater. 2015;14(11):1087–1098.
  • Shibaev VP, AYu B. Liquid crystalline polymers: development trends and photocontrollable materials. Russ Chem Rev. 2017;86(11):1024–1072.
  • Ryabchun A, Bobrovsky A. Cholesteric liquid crystal materials for tunable diffractive optics. Adv Opt Mater. 2018;6(15):1800335.
  • Chilaya G. Cholesteric liquid crystals: properties and applications. London: LAP LAMBERT Academic Publishing; 2013.
  • Kim Y, Tamaoki N. Photoresponsive chiral dopants: light-driven helicity manipulation in cholesteric liquid crystals for optical and mechanical functions. ChemPhotochem. 2019;3(6):284–303.
  • Petri A, Bräuchle C, Leigeber H, et al. Cholesteric liquid crystalline siloxanes with azo dye. Generation of additional reflection bands with linearly polarized light. Liq Cryst. 1993;15(1):113–121.
  • Bobrovsky A, Boiko N, Shibaev V, et al. Photo-orientation phenomena in photosensitive chiral nematic copolymers. Liq Cryst. 2002;29(11):1469–1476.
  • Ryabchun A, Raguzin I, Stumpe J, et al. Cholesteric polymer scaffolds filled with azobenzene-containing nematic mixture with phototunable optical properties. ACS Appl Mater Interfaces. 2016;8(40):27227–27235.
  • Yang DK, Chien LC, Doane JW. Cholesteric liquid crystal/polymer dispersion for haze-free light shutters. Appl Phys Lett. 1992;60(25):3102–3104.
  • Yang DK, West JL, Chien LC, et al. Control of reflectivity and bistability in displays using cholesteric liquid crystals. J Appl Phys. 1994;6(2):1331–1333.
  • Xu M, Yang D-K. Dual frequency cholesteric light shutters. Appl Phys Lett. 1997;70(6):720–722.
  • Ren H, Wu S-T. Reflective reversed-mode polymer stabilized cholesteric texture light switches. J Appl Phys. 2002;92(2):797–800.
  • Liang X, Y-Q L, Y-H W, et al. Dual-frequency addressed variable optical attenuator with submillisecond response time. Jpn J Appl Phys Part 1. 2005;44(3R):1292–1295.
  • Lu S-Y, Chien L-C. A polymer-stabilized single-layer color cholesteric liquid crystal display with anisotropic reflection. Appl Phys Lett. 2007;91(13):131119/1−131119/3.
  • White TJ, McConney ME, Bunning TJ. Dynamic color in stimuli-responsive cholesteric liquid crystals. J Mater Chem. 2010;20(44):9832–9847.
  • Bailey CA, Tondiglia VP, Natarajan LV, et al. Electromechanical tuning of cholesteric liquid crystals. J Appl Phys. 2010;107(1):013105/1−013105/8.
  • White TJ, Bricker RL, Natarajan LV, et al. Electromechanical and light tunable cholesteric liquid crystals. Opt Commun. 2010;283(18):3434–3436.
  • Tondiglia VP, Natarajan LV, Bailey CA, et al. Electrically induced bandwidth broadening in polymer stabilized cholesteric liquid crystals. J Appl Phys. 2011;110(5):053109/1−053109/8.
  • Tondiglia VP, Natarajan LV, Bailey CA, et al. Bandwidth broadening induced by ionic interactions in polymer stabilized cholesteric liquid crystals. Opt Mater Exp. 2014;4(7):1465–1472.
  • Lee KM, Tondiglia VP, McConney ME, et al. Color-tunable mirrors based on electrically regulated bandwidth broadening in polymer-stabilized cholesteric liquid crystals. ACS Photonics. 2014;1(10):1033–1041.
  • Inoue Y, Moritake H. Dynamic control of colorful reflection toward practical cholesteric liquid crystal displays. Opt Expr. 2016;24(20):23027–23036.
  • Mrukiewicz M, Iadlovska OS, Babakhanova G, et al. Wide temperature range of an electrically tunable selective reflection of light by oblique helicoidal cholesteric. Liq Cryst. 2019;46(10):1544–1550.
  • Nava G, Barboza R, Simoni F, et al. Optical control of light polarization in heliconical cholesteric liquid crystals. Opt Lett. 2022;47(12):2967–2970.
  • Thapa K, Iadlovska OS, Bisoyi HK, et al. Combined electric and photocontrol of selective light reflection at an oblique helicoidal cholesteric liquid crystal doped with azoxybenzene derivative. Phys Rev E. 2021;104(4):044702.
  • Nemati H, Liu S, Zola RS, et al. Mechanism of electrically induced photonic band gap broadening in polymer stabilized cholesteric liquid crystals with negative dielectric anisotropies. Soft Matter. 2015;11(6):1208–1213.
  • Finkelmann H, Kim ST, Munoz A, et al. Tunable mirrorless lasing in cholesteric liquid crystalline elastomers. Adv Mater. 2001;13:1069–1072.
  • Kizhakidathazhath R, Geng Y, Jampani VSR, et al. Facile anisotropic deswelling method for realizing large-area cholesteric liquid crystal elastomers with uniform structural color and broad-range mechanochromic response. Adv Funct Mater. 2019;30(7):1909537.
  • Martinez AM, McBride MK, White TJ, et al. Reconfigurable and spatially programmable chameleon skin-like material utilizing light responsive covalent adaptable cholesteric liquid crystal elastomers. Adv Funct Mater. 2020;30(35):2003150.
  • Balenko NV, AYu B, Shibaev VP. Mechano-optical response of novel polymer composites based on elastic polyurethane matrix filled with low-molar-mass cholesteric droplets. Macromol Mater Eng. 2021;306(10):2100262.
  • Gao Y, Ding W, Lu J. Templated twist structure liquid crystals and photonic applications. Polymers. 2022;14(12):2455.
  • Guo J, Wu H, Chen F, et al. Fabrication of multi-pitched photonic structure in cholesteric liquid crystals based on a polymer template with helical structure. J Mater Chem. 2010;20(20):4094–4102.
  • Zhu Z, Gao Y, Lu J. Multi-pitch liquid crystal filters with single layer polymer template. Polymers. 2021;13(15):252.
  • McConney ME, Tondiglia VP, Hurtubise JM, et al. Thermally induced, multicolored hyper-reflective cholesteric liquid crystals. Adv Mater. 2011;23(12):1453–1457.
  • Guo J, Cao H, Wei J, et al. Polymer stabilized liquid crystal films reflecting both right-and left-circularly polarized light. Appl Phys Lett. 2008;93(20):201901.
  • Lin J-D, Chu C-L, Lin H-Y, et al. Wide-band tunable photonic bandgaps based on nematic-refilling cholesteric liquid crystal polymer template samples. Opt Mater Exp. 2015;5(6):1419–1430.
  • Choi SS, Morris SM, Huck WTS, et al. Simultaneous red–green–blue reflection and wavelength tuning from an achiral liquid crystal and a polymer template. Adv Mater. 2010;22(1):53–56.
  • Lin J-D, Lin H-L, Lin H-Y, et al. Wide-band tunable photonic bandgap device and laser in dye-doped liquid crystal refilled cholesteric liquid crystal polymer template system. Proc SPIE 10125, Emerging Liq Cryst Technol XII. 2017 Feb 15;101250A. doi:10.1117/12.2256839.
  • Ryabchun A, Sakhno O, Stumpe J, et al. Full-polymer cholesteric composites for transmission and reflection holographic gratings. Adv Opt Mater. 2017;5(17):1700314.
  • Bobrovsky A, Samokhvalov P, Shibaev V. An effective method for the preparation of stable LC composites with high concentration of quantum dots. Adv Opt Mater. 2014;2(12):1167–1172.
  • Broer DJ, Lub J, Mol GN. Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient. Nature. 1995;378(6556):467–469.
  • Zhou H, Wang H, He W, et al. Research progress of cholesteric liquid crystals with broadband reflection. Molecules. 2022;27(14):4427.
  • Muraveva V, Kozmík V, Kohout M, et al. The smectogenity as a crucial factor of broadening of the selective light reflection peak in cholesteric photopolymerizable mixtures. Liq Cryst. 2022;49(11):1459–1465.
  • Barnik MI, Blinov LM, Lazarev VV, et al. Lasing from photonic structure: cholesteric-voltage controlled nematic-cholesteric liquid crystal. J Appl Phys. 2008;103(12):123113.
  • Helfrich W. Deformation of cholesteric liquid crystals with low threshold voltage. Appl Phys Lett. 1970;17(12):531–532.
  • Hurault JP. Static distortions of a cholesteric planar structure induced by magnetic or ac electric fields. J Chem Phys. 1973;59(4):2068–2075.
  • Li W-S, Shen Y, Chen Z-J, et al. Demonstration of patterned polymer-stabilized cholesteric liquid crystal textures for anti-counterfeiting two-dimensional barcodes. Appl Opt. 2017;56(3):601–606.
  • Ryabchun A, Yakovlev D, Bobrovsky A, et al. Dynamic diffractive patterns in helix-inverting cholesteric liquid crystals. ACS Appl Mater Interfaces. 2019;11(11):10895–10904.
  • Blinov LM. Structure and properties of liquid crystals. Dordrecht Heidelberg London New York: Springer; 2011. p. 320.
  • Toth-Katona T, Cigl M, Fodor-Csorba K, et al. Functional photochromic methylhydrosiloxane-based side-chain liquid-crystalline polymers. Macromol Chem Phys. 2014;215(8):742–752. DOI:10.1002/macp.201300729
  • Bobrovsky AYu, Boiko NI, Shibaev VP. New chiral-photochromic dopant with variable helical twisting power and its use in photosensitive cholesteric materials. Mol Cryst Liq Cryst. 2001;363(1):35–50.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.