345
Views
1
CrossRef citations to date
0
Altmetric
Confined Liquid Crystals

Geometric-phase metalens to be used for tunable optical tweezers in microfluidics

, , &
Pages 1193-1203 | Received 30 Nov 2022, Accepted 17 Jan 2023, Published online: 27 Jan 2023

References

  • Sihvola A, Tretyakov S, de Baas D. Metamaterials with extreme material parameters. J Commun Technol El. 2007;52(9):986–990.
  • Cai W, Shalaev VM. Optical Metamaterials. New York: Springer Science+Business Media; 2010.
  • Soukoulis C, Wegener M. Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nat Photon. 2011;5(9):523–530.
  • Kadic M, Milton GW, van Hecke M, et al. 3D metamaterials. Nat Rev Phys. 2019;1(3):198–210. DOI:10.1038/s42254-018-0018-y
  • Veselago VG. The electrodynamics of substances with simultaneously negative values of ɛ and μ. Sov Phys Usp. 1968;10(4):509–514.
  • Smith DR, Padilla WJ, Vier DC, et al. Composite medium with simultaneously negative permeability and permittivity. Phys Rev Lett. 2000;84(18):4184–4187. DOI:10.1103/PhysRevLett.84.4184
  • Shelby RA, Smith DR, Schultz S. Experimental verification of a negative index of refraction. Science. 2001;292(5514):77–79.
  • Ozbay E, Guven K, Aydin K. Metamaterials with negative permeability and negative refractive index: experiments and simulations. J Opt A Pure Appl Opt. 2007;9(9):301–307.
  • Valentine J, Zhang S, Zentgraf T, et al. Three-dimensional optical metamaterial with a negative refractive index. Nature. 2008;455(7211):376–379. DOI:10.1038/nature07247
  • Pendry JB. Negative refraction makes a perfect lens. Phys Rev Lett. 2000;85(18):3966–3969.
  • Liu ZW, Lee H, Xiong Y, et al. Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science. 2007;315(5819):1686. DOI:10.1126/science.1137368
  • Lu D, Liu Z. Hyperlenses and metalenses for far-field super-resolution imaging. Nat Commun. 2012;3:1205.
  • Schuring D, Mock J, Justice B, et al. Metamaterial electromagnetic cloak at microwave frequencies. Science. 2006;314(5801):977–980. DOI:10.1126/science.1133628
  • Zhang S, Xia C, Fang N. Broadband acoustic cloak for ultrasound waves. Phys Rev Lett. 2011;106(2):024301.
  • Chen H, Chan C, Sheng P. Transformation optics and metamaterials. Nat Mater. 2010;9(5):387–396.
  • Kildishev AV, Boltasseva A, Shalaev VM. Planar photonics with metasurfaces. Science. 2013;339(6125):1232009.
  • Assouar B, Liang B, Wu Y, et al. Acoustic metasurfaces. Nat Rev Mater. 2018;3(12):460–472. DOI:10.1038/s41578-018-0061-4
  • Li Y, Fan X, Huang Y, et al. Dielectric metalens for superoscillatory focusing based on high-order angular bessel function. Nanomaterials. 2022;12(19):3485. DOI:10.3390/nano12193485
  • Werner DH, Kwon DH, Khoo IC, et al. Liquid crystal clad near-infrared metamaterials with tunable negative-zero-positive refractive indices. Opt Express. 2007;15(6):3342–3347. DOI:10.1364/OE.15.003342
  • Zhao Q, Kang L, Du B, et al. Electrically tunable negative permeability metamaterials based on nematic liquid crystals. Appl Phys Lett. 2007;90(1):011112. DOI:10.1063/1.2430485
  • Zhang F, Kang L, Zhao Q, et al. Magnetically tunable left handed metamaterials by liquid crystal orientation. Opt Express. 2009;17(6):4360–4366. DOI:10.1364/OE.17.004360
  • Liu YJ, Hao Q, Smalley JST, et al. A frequency-addressed plasmonic switch based on dual-frequency liquid crystals. Appl Phys Lett. 2010;97(9):091101. DOI:10.1063/1.3483156
  • Zhang F, Zhao Q, Zhang W, et al. Voltage tunable short wire-pair type of metamaterial infiltrated by nematic liquid crystal. Appl Phys Lett. 2010;97(13):134103. DOI:10.1063/1.3496034
  • Hao Q, Zhao Y, Juluri BK, et al. Frequency addressed tunable transmission in optically thin metallic nanohole arrays with dual frequency liquid crystals. J Appl Phys. 2011;109(8):084340. DOI:10.1063/1.3581037
  • Tasolamprou AC, Zografopoulos DC, Kriezis EE. Liquid crystal-based dielectric loaded surface plasmon polariton optical switches. J Appl Phys. 2011;110(9):093102.
  • Zheludev N, Kivshar Y. From metamaterials to metadevices. Nat Mater. 2012;11(11):917–924.
  • Buchnev O, Wallauer J, Walther M, et al. Controlling intensity and phase of terahertz radiation with an optically thin liquid crystal-loaded metamaterial. Appl Phys Lett. 2013;103(14):141904. DOI:10.1063/1.4823822
  • Atorf B, Mühlenbernd H, Muldarisnur M, et al. Electro-optic tuning of split ring resonators embedded in a liquid crystal. Opt Lett. 2014;39(5):1129–1132. DOI:10.1364/OL.39.001129
  • Atorf B, Mühlenbernd H, Muldarisnur M, et al. Effect of alignment on a liquid crystal/split ring resonator metasurface. Chem Phys Chem. 2014;15(7):1470–1476. DOI:10.1002/cphc.201301069
  • Atorf B, Rasouli H, Mühlenbernd H, et al. Switchable plasmonic hologram utilizing the electrooptic effect of a liquid crystal circular polarizer. J Phys Chem C. 2018;122(8):4600–4606. DOI:10.1021/acs.jpcc.7b12609
  • Atorf B, Friesen S, Rennerich R, et al. Switchable plasmonic metasurface utilizing the electro-optic Kerr effect of a blue phase liquid crystal. Polym Sci Ser C. 2018;60(1):55–62. DOI:10.1134/S1811238218010010
  • Atorf B, Mühlenbernd H, Zentgraf T, et al. All-optical switching of a dye-doped liquid crystal plasmonic metasurface. Opt Express. 2020;28(6):8898–8908. DOI:10.1364/OE.383877
  • Sharma M, Hendler N, Ellenbogen T. Electrically switchable color tags based on active liquid-crystal plasmonic metasurface platform. Adv Opt Mater. 2020;8(7):1901182.
  • Sharma M, Ellenbogen T. An all-optically controlled liquid-crystal plasmonic metasurface platform. Laser Photonics Rev. 2020;14(11):2000253.
  • Komar A, Paniagua-Domínguez R, Miroshnichenko A, et al. Dynamic beam switching by liquid crystal tunable dielectric metasurfaces. ACS Photonics. 2018;5(5):1742–1748. DOI:10.1021/acsphotonics.7b01343
  • Sun M, Xu X, Sun XW, et al. Efficient visible light modulation based on electrically tunable all dielectric metasurfaces embedded in thin-layer nematic liquid crystals. Sci Rep. 2019;9(1):8673. DOI:10.1038/s41598-019-45091-5
  • Pancharatnam S. Generalized theory of interference, and its applications. Part I. Coherent Pencils Proc Indian Acad Sci A. 1956;44(5):247–262.
  • Berry MV. Quantal phase factors accompanying adiabatic changes. Proc R Soc A. 1984;392(1802):45–57.
  • Suwannasopon S, Meyer F, Schlickriede C, et al. Miniaturized metalens based optical tweezers on liquid crystal droplets for lab-on-a-chip optical motors. Crystals. 2019;9(10):515. DOI:10.3390/cryst9100515
  • Chantakit T, Schlickriede C, Sain B, et al. All-dielectric silicon metalens for two-dimensional particle manipulation in optical tweezers. Photonics Res. 2020;8(9):1435–1440. DOI:10.1364/PRJ.389200
  • Schadt M, Helfrich W. Voltage-dependent optical activity of a twisted nematic liquid crystal. Appl Phys Lett. 1971;18(4):127–128.
  • Broer D, Finkelmann H, Kondo K. In-situ photopolymerization of an oriented liquid-crystalline acrylate. Makromol Chem. 2003;189(1):185–194.
  • Habibpourmoghadam A, Lucchetti L, Evans DR, et al. Laser-induced erasable patterns in a N* liquid crystal on an iron doped lithium niobate surface. Opt Express. 2017;25(21):26148–26159. DOI:10.1364/OE.25.026148
  • Schafforz SL, Nordendorf G, Nava G, et al. Formation of relocatable umbilical defects in a liquid crystal with positive dielectric anisotropy induced via photovoltaic fields. J Mol Liq. 2020;307:112963.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.