202
Views
1
CrossRef citations to date
0
Altmetric
Mathematical Modelling, Symmetry and Topology

Symmetry arguments and the totalitarian principle in the physics of liquid crystals and other condensed matter systems

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1449-1460 | Received 26 Jan 2023, Published online: 24 Mar 2023

References

  • Lehnert R. CPT symmetry and its violation. Symmetry. 2016;8(11):114.
  • Hanc J, Tuleja S, Hancova M. Symmetries and conservation laws: consequences of Noether’s theorem. Am J Phys. 2004;72(4):428–435.
  • Wu CS, Ambler E, Hayward RW, et al. Experimental test of parity conservation in beta decay. Phys Rev. 1957;105(4):1413.
  • Sonin AA. The physical basis of dimensional analysis. 2nd ed. Cambridge: Deprtment of Mechanical Engineering, MIT; 2001. p. 50.
  • Goldreich P, Mahajan S, Phinney S. Order-of-magnitude physics: understanding the world with dimensional analysis, educated guesswork, and white lies. Cambridge: University of Cambridge; 1999 Aug.
  • Weisskopf VF. Of atoms, mountains, and stars: a study in qualitative physics. Science. 1975;187(4177):605–612.
  • Purcell E. Back of the envelope problems. 1977. Available from: https://www.aapt.org/Publications/AJP/Readers/back_of_the_envelope.cfm
  • Maxwell JC. Rotation of a falling card. Cambridge Dublin Math J. 1854;9:145.
  • Lugt HJ. Autorotation. Annu Rev Fluid Mech. 1983;15(1):123–147.
  • Hargreaves DM, Kakimpa B, Owen JS. The computational fluid dynamics modelling of the autorotation of square, flat plates. J Fluids Struct. 2014;46:111–133.
  • Fluid forces and moments on flat plates, data item 70015. London (UK): Engineering Science Data Unit; 1970 Sept.
  • Smith EH. Autorotating wings: an experimental investigation. J Fluid Mech. 1971;50(3):513–534.
  • Varshney K, Chang S, Wang ZJ. The kinematics of falling maple seeds and the initial transition to a helical motion. Nonlinearity. 2011;25(1):C1.
  • Sky hook spirals from plane. Popular Mechanics. 1944 Dec. p. 75.
  • Kong JA. Electromagneitc wave theory. Cambridge (MA): EMW Publishing; 1986.
  • Agranovich VM, Ginzburg VL. Crystal optics with spatial dispersion and excitons. Berlin: Springer; 1984.
  • Carothers KJ, Norwood RA, Pyun J. High verdet constant materials for magneto-optical faraday rotation: a review. Chem Mater. 2022;34(6):2531–2544.
  • Wisniewski-Barker E, Gibson GM, Franke-Arnold S, et al. Mechanical faraday effect for orbital angular momentum-carrying beams. Opt Express. 2014;22(10):11690–11697.
  • Barnett SJ. Magnetization by rotation. Science. 1918;XVLIII(1239):303.
  • Hendricks JB, King CA, Roschach HE. Magnetization by rotation: the barnett effect in a superconductor. J Low Temp Phys. 1971;4(2):209–229.
  • Frenkel VY. On the history of the Einstein–de haas effect. Sov Phys Usp. 1979;22(7):580.
  • Mameda K, Yamamoto A. Magnetism and rotation in relativistic field theory. Prog Theor Exp Phys. 0053B;2016(9):093B05.
  • Tolman RC, Stewart TD. The electromotive force produced by the acceleration of metals. Phys Rev. 1916;8(2):97.
  • Moorhead GF, Opat GI. Electric fields in accelerating conductors: measurement of the EMF in rotationally accelerating coils. Classical Quantum Gravity. 1996;13(12):3129.
  • Melnikovsky LA. Polarization of dielectrics by acceleration. J Low Temp Phys. 2007;148(5–6):559–564.
  • Davidson Q, Efinger HJ. Gravity-induced electric polarisation near the schwarzschild limit. Nature. 1974;249(5456):431.
  • Devine B, Cohen JE. Absolute zero gravity. New York: Simon and Schuster; 1992.
  • White TH. The once and future king. New York: The Berkley Publishing Group; 1958.
  • Gell-Mann M. The interpretation of the new particles as displaced charge multiplets. Il Nuovo Cimento. 1956;4:848.
  • Weinberg S. Einstein‘s Mistakes. Physics Today. 2005.
  • Kragh H. Physics and the totalitarian principle. arXiv:1907.04623v1. 2019.
  • Wirnsbergera P, Fijana D, Lightwood R, et al. Numerical evidence for thermally induced monopoles. PNAS. 2017;114(19):4911.
  • Guo T, Zheng X, Palffy-Muhoray P. Surface anchoring energy of cholesteric liquid crystals. Liq Cryst. 2020;47(4):477.
  • Meyer R.B. Structural problems in liquid crystals physics. In: Les Houches Summer School in Theoretical Physics, Molecular Fluids, Les Houches Lectures. (Vol. XXV-1973). New York: Gordon and Breach; 1976.
  • Meyer RB, Liebert L, Strelecki L, et al. Ferroelectric liquid crystals. J de Phys Lett. 1975;36(3):69–71.
  • Lavrentovich OD. Ferroelectric nematic liquid crystal, a century in waiting. PNAS. 2020;117(26):2020.
  • Chen X, Korblova E, Dong D, et al. First-principles experimental demonstration of ferroelectricity in a thermotropic nematic liquid crystal: polar domains and striking electro-optics. PNAS. 2020;117(25):117.
  • Madhusudana NV. Simple molecular model for ferroelectric nematic liquid crystals exhibited by small rodlike mesogens. Phys Rev E. 2021 Jul 21;104(1):014704.
  • Chen X, Martinez V, Nacke P, et al. Observation of a uniaxial ferroelectric smectic a phase. PNAS. 2022;119(47):119.
  • Meyer RB. Piezoelectric effects in liquid crystals. Phys Rev Lett. 1969;22(18):918–921.
  • Barbero G, Dozov I, Palierne JF, et al. Order electricity and surface orientation in nematic liquid crystals. Phys Rev Lett. 1986;56(19):2056.
  • Sarman S, Laaksonen A. Director alignment relative to the temperature gradient in nematic liquid crystals studied by molecular dynamics simulation. Phys Chem Chem Phys. 2014;16(28):14741.
  • Lehmann O. Structur, System und magnetisches Verhalten flüssiger Krystalle und deren Mischbarkeit mit festen. Ann Phys. 1900;4(8):649–705.
  • Akopyan RS, Zel’dovich BY. Thermomechanical effects in deformed nematics. Zh Eksp Teor Fiz. 1984;87:1660–1669.
  • Zakharov AV, Vakulenko AA. Influence of the flow on the orientational dynamics induced by temperature gradient in nematic hybrid-oriented cells. J Chem Phys. 2007;127(8):084907.
  • Sliwa I, Zakharov AV. Heat driven flows in microsized nematic volumes: computational studies and analysis. Symmetry. 2021;13:459.
  • Sliwa I, Zakharov AV. Shear-driven mechanism of temperature gradient formation in microfluidic nematic devices: theory and numerical studies. Symmetry. 2021;13:1533.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.