170
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Beam scanning leaky wave antenna based on liquid crystals with gesture-controlled system

, , , , , , & show all
Pages 2154-2165 | Received 23 Jan 2023, Accepted 26 Jun 2023, Published online: 04 Jul 2023

References

  • Wang S, Li Z, Wei B, et al. A ka-band circularly polarized fixed-frequency beam-scanning leaky-wave antenna based on groove gap waveguide with consistent high gains. IEEE Trans Antennas Propag. 2020;69(4):1959–1969. doi: 10.1109/TAP.2020.3030955
  • Cho S, Salim A, Song H-J. Two-dimensional beam steering active lens with simple grid bias lines at 19 ghz. IEEE Trans Veh Technol. 2021;70(10):9716–9724. doi: 10.1109/TVT.2021.3111435
  • Bosma S, Van Rooijen N, Alonso-Delpino M, et al. First demonstration of dynamic high-gain beam steering with a scanning lens phased array. IEEE J Microwaves. 2022;2(3):419–428. doi: 10.1109/JMW.2022.3179953
  • Karimian R, Taravati S, Ardakani MD, et al. Nonreciprocal-beam phased-array antennas based on transistor-loaded phase shifters. IEEE Trans Antennas Propag. 2021;69(11):7572–7581. doi: 10.1109/TAP.2021.3076674
  • Chen C-N, Lin Y-H, Hung L-C, et al. 38-ghz phased array transmitter and receiver based on scalable phased array modules with endfire antenna arrays for 5g mmw data links. IEEE Trans Microwave Theory Tech. 2020;69(1):980–999. doi: 10.1109/TMTT.2020.3035091
  • Boroujeni SR, Mazaheri MH, Ituah S, et al. A high-efficiency 27–30-ghz 130-nm bi-cmos transmitter front end for satcom phased arrays. IEEE Trans Microwave Theory Tech. 2021;69(11):4977–4985. doi: 10.1109/TMTT.2021.3103975
  • Ali MZ, Khan QU. High gain backward scanning substrate integrated waveguide leaky wave antenna. IEEE Trans Antennas Propag. 2020;69(1):562–565. doi: 10.1109/TAP.2020.3006389
  • Ye Q-C, Zhang Y-M, Li J-L, et al. High-isolation dual-polarized leaky-wave antenna with fixed beam for full-duplex millimeter-wave applications. IEEE Trans Antennas Propag. 2021;69(11):7202–7212. doi: 10.1109/TAP.2021.3109592
  • Neophytou K, Steeg M, Stöhr A, et al. Compact folded leaky-wave antenna radiating a fixed beam at broadside for 5g mm-wave applications. IEEE Antennas Wirel Propag Lett. 2021;21(2):292–296. doi: 10.1109/LAWP.2021.3128563
  • Wang M, Ma HF, Zhang HC, et al. Frequency-fixed beam-scanning leaky-wave antenna using electronically controllable corrugated microstrip line. IEEE Trans Antennas Propag. 2018;66(9):4449–4457. doi: 10.1109/TAP.2018.2845452
  • Lv H-H, Huang Q-L, Hou J-Q, et al. Fixed-frequency beam-steering leaky-wave antenna with switchable beam number. IEEE Antennas Wirel Propag Lett. 2020;19(12):2077–2081. doi: 10.1109/LAWP.2020.3022810
  • Fu J-H, Li A, Chen W, et al. An electrically controlled crlh-inspired circularly polarized leaky-wave antenna. IEEE Antennas Wirel Propag Lett. 2016;16:760–763. doi: 10.1109/LAWP.2016.2601960
  • Li Z, Guo YJ, Chen S-L, et al. A period-reconfigurable leaky-wave antenna with fixed-frequency and wide-angle beam scanning. IEEE Trans Antennas Propag. 2019;67(6):3720–3732. doi: 10.1109/TAP.2019.2907636
  • Wang S, Li Z, Chen M, et al. A TE₀₁-mode groove-gap-waveguide-based wideband fixed-frequency beam-scanning leaky-wave antenna for millimeter-wave applications. IEEE Trans Antennas Propag. 2021;70(6):4171–4180. doi: 10.1109/TAP.2021.3137497
  • Wang S, Li Z, Chen M, et al. Dual-band fixed-frequency beam-scanning leaky-wave antenna for large-frequency-ratio microwave and millimeter-wave applications. IEEE Trans Antennas Propag. 2022;70(9):7458–7467. doi: 10.1109/TAP.2022.3181037
  • Tang X-L, Zhang Q, Chen Y, et al. Single-layer fixed-frequency beam-scanning goubau-line antenna using switched pin diodes. IEEE Microwave Wireless Compon Lett. 2019;29(6):430–432. doi: 10.1109/LMWC.2019.2913779
  • Ghalibafan J, Hashemi S. Leaky-wave centerline longitudinal slot antenna fed by transversely magnetized ferrite. IEEE Trans Magn. 2015;52(1):1–4. doi: 10.1109/TMAG.2015.2474310
  • Apaydin N, Sertel K, Volakis JL. Nonreciprocal leaky-wave antenna based on coupled microstrip lines on a non-uniformly biased ferrite substrate. IEEE Trans Antennas Propag. 2013;61(7):3458–3465. doi: 10.1109/TAP.2013.2257646
  • Kodera T, Sounas DL, Caloz C. Nonreciprocal magnetless crlh leaky-wave antenna based on a ring metamaterial structure. IEEE Antennas Wirel Propag Lett. 2011;10:1551–1554. doi: 10.1109/LAWP.2011.2181477
  • Alex-Amor A, Palomares-Caballero A, Mesa F, et al. Dispersion analysis of periodic structures in anisotropic media: application to liquid crystals. IEEE Trans Antennas Propag. 2021;70(4):2811–2821. doi: 10.1109/TAP.2021.3137208
  • Che B-J, Jin T, Erni D, et al. Electrically controllable composite right/left-handed leaky-wave antenna using liquid crystals in pcb technology. IEEE Trans Compon Packaging Manuf Technol. 2017;7(8):1331–1342. doi: 10.1109/TCPMT.2017.2680469
  • Ma S, Yang G-H, Erni D, et al. Liquid crystal leaky-wave antennas with dispersion sensitivity enhancement. IEEE Trans Compon Packaging Manuf Technol. 2017;7(5):792–801. doi: 10.1109/TCPMT.2017.2683529
  • Kim H, Nam S. Performance improvement of lc-based beam-steering leaky-wave holographic antenna using decoupling structure. IEEE Trans Antennas Propag. 2021;70(4):2431–2438. doi: 10.1109/TAP.2021.3118779
  • Wang S, Li Z, Chen X, et al. A liquid crystal leaky-wave antenna with fixed-frequency beam scanning and open-stop-band suppression. Liq Cryst. 2022;49(11):1403–1410. doi: 10.1080/02678292.2022.2037767
  • Karabey OH. Electronic beam steering and polarization agile planar antennas in liquid crystal technology. 1em plus 0.5em minus 0.4em Springer Science & Business Media; 2013. doi: 10.1007/978-3-319-01424-1_1
  • Kamrath F, Polat E, Matic S, et al. Bandwidth and center frequency reconfigurable waveguide filter based on liquid crystal technology. IEEE J Microwaves. 2021;2(1):134–144. doi: 10.1109/JMW.2021.3115244
  • Wang D, Polat E, Tesmer H, et al. Switched and steered beam end-fire antenna array fed by wideband via-less butler matrix and tunable phase shifters based on liquid crystal technology. IEEE Trans Antennas Propag. 2022;70(7):5383–5392. doi: 10.1109/TAP.2022.3142334
  • Polat E, Kamrath F, Matic S, et al. Novel hybrid electric/magnetic bias concept for tunable liquid crystal based filter. IEEE J Microwaves. 2022;2(3):490–495. doi: 10.1109/JMW.2022.3180227
  • Tchema R, Papanicolaou NC, Polycarpou AC. An investigation of the dynamic beam-steering capability of a liquid-crystal-enabled leaky-wave antenna designed for 5g applications. Appl Phys Lett. 2021;119(3):034104. doi: 10.1063/5.0055138
  • Franc A-L, Karabey OH, Rehder G, et al. Compact and broadband millimeter-wave electrically tunable phase shifter combining slow-wave effect with liquid crystal technology. IEEE Trans Microwave Theory Tech. 2013;61(11):3905–3915. doi: 10.1109/TMTT.2013.2282288
  • Han Y, Wang J, Li Y, et al. A frequency-scanning antenna based on hybridization of the quasi-tem mode and spoof surface plasmon polaritons mode. J Phys D Appl Phys. 2019;52(38):38LT01. doi: 10.1088/1361-6463/ab2e8d
  • Yin JY, Ren J, Zhang Q, et al. Frequency-controlled broad-angle beam scanning of patch array fed by spoof surface plasmon polaritons. IEEE Trans Antennas Propag. 2016;64(12):5181–5189. doi: 10.1109/TAP.2016.2623663

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.