279
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Phase behaviour of ester-linked cyanobiphenyl dimers and fluorinated analogues: the direct isotropic to twist-bend nematic phase transition

, &
Pages 2216-2228 | Received 01 May 2023, Accepted 22 Jul 2023, Published online: 07 Aug 2023

References

  • Vries AD. X-ray photographic studies of liquid crystals I. A cybotactic nematic phase. Mol Cryst Liq Cryst. 1970;10(1–2):219–236. doi: 10.1080/15421407008083495
  • Fu K, Sone M, Tokita M, et al. Aromatic polyesters with flexible side chains. 10. studies on biaxiality in nematic liquid crystal of BC-n polyester. Polym J. 2006;38(5):442–446. doi: 10.1295/polymj.38.442
  • Vita F, Tauscher T, Speetjens F, et al. Evidence of biaxial order in the cybotactic nematic phase of bent-core mesogens. Chem Mater. 2014;26(16):4671–4674. doi: 10.1021/cm5019822
  • Tschierske C, Photinos DJ. Biaxial nematic phases. J Mater Chem. 2010;20(21):4263–4294. doi: 10.1039/b924810b
  • Lehmann M. Biaxial nematics from their prediction to the materials and the vicious circle of molecular design. Liq Cryst. 2011;38(11–12):1389–1405. doi: 10.1080/02678292.2011.624374
  • Cestari M, Diez-Berart S, Dunmur DA, et al. Phase behavior and properties of the liquid-crystal dimer 1′′,7′′-bis(4-cyanobiphenyl-4′-yl) heptane: a twist-bend nematic liquid crystal. Phys Rev E. 2011;84(3):031704. doi: 10.1103/PhysRevE.84.031704
  • Panov VP, Nagaraj M, Vij JK, et al. Spontaneous periodic deformations in nonchiral planar-aligned bimesogens with a nematic-nematic transition and a negative elastic constant. Phys Rev Lett. 2010;105(16):167801. doi: 10.1103/PhysRevLett.105.167801
  • Merkel K, Kocot A, Vij JK, et al. Distortions in structures of the twist bend nematic phase of a bent-core liquid crystal by the electric field. Phys Rev E. 2018;98(2):022704. doi: 10.1103/PhysRevE.98.022704
  • Merkel K, Kocot A, Welch C, et al. Soft modes of the dielectric response in the twist–bend nematic phase and identification of the transition to a nematic splay bend phase in the CBC7CB dimer. Phys Chem Phys. 2019;21(41):22839–22848. doi: 10.1039/C9CP04952E
  • Meyer C, Blanc C, Luckhurst GR, et al. Biaxiality-driven twist-bend to splay-bend nematic phase transition induced by an electric field. Sci Adv. 2020;6(36):eabb8212. doi: 10.1126/sciadv.abb8212
  • Yen CC, Taguchi Y, Tokita M, et al. Polar nematic phase in lyotropic solutions of poly (γ-benzyl glutamate) and its temperature instability as detected by SHG measurement. Macromolecules. 2008;41(8):2755–2755. doi: 10.1021/ma800208y
  • Nishikawa H, Shiroshita K, Higuchi H, et al. A fluid liquid‐crystal material with highly polar order. Adv Mater. 2017;29(43):1702354. doi: 10.1002/adma.201702354
  • Mandle RJ, Cowling SJ, Goodby JW. A nematic to nematic transformation exhibited by a rod-like liquid crystal. Phys Chem Chem Phys. 2017;19(18):11429–11435. doi: 10.1039/C7CP00456G
  • Mertelj A, Cmok L, Sebastián N, et al. Splay nematic phase. Phys Rev X. 2018;8(4):041025. doi: 10.1103/PhysRevX.8.041025
  • Chen X, Korblova E, Dong D, et al. First-principles experimental demonstration of ferroelectricity in a thermotropic nematic liquid crystal: polar domains and striking electro-optics. Proc Natl Acad Sci USA. 2020;117(25):14021–14031. doi: 10.1073/pnas.2002290117
  • Dai S, Li J, Kougo J, et al. Polar liquid crystalline polymers bearing mesogenic side chains with large dipole moment. Macromolecules. 2021;54(13):6045–6051. doi: 10.1021/acs.macromol.1c00864
  • Meyer RB. Structural problems in liquid crystal physics, molecular fluids: summer school in theoretical physics, les houches lectures 1973. Balian R, Weil G, editors New York: Gordon and Breach; 1976. p. 271–343.
  • Dozov I. On the spontaneous symmetry breaking in the mesophases of achiral banana-shaped molecules. Europhys Lett. 2011;56(2):247–253. doi: 10.1209/epl/i2001-00513-x
  • Memmer R. Liquid crystal phases of achiral banana-shaped molecules: a computer simulation study. Liq Cryst. 2002;29(4):483–496. doi: 10.1080/02678290110104586
  • Ungar G, Feijoo JL, Keller A, et al. Simulataneous X-ray/DSC study of mesomorphism in polymers with a semiflexible mesogen. Macromolecules. 1990;23(14):3411–3416. doi: 10.1021/ma00216a004
  • Šepelj M, Lesac A, Baumeister U, et al. Dimeric salicylaldimine-based mesogens with flexible spacers: parity-dependent mesomorphism. Chem Mater. 2006;18(8):2050–2058. doi: 10.1021/cm0526213
  • Sěpelj M, Lesac A, Baumeister U, et al. Intercalated liquid-crystalline phases formed by symmetric dimers with an α,ω-diiminoalkylene spacer. J Mater Chem. 2007;17(12):1154–1165. doi: 10.1039/B612517D
  • Schrӧder MW, Diele S, Pelzl G, et al. Different nematic phases and a switchable SmCP phase formed by homologues of a new class of asymmetric bent-core mesogens. J Mater Chem. 2003;13(8):1877–1882. doi: 10.1039/B305451A
  • Yelamaggad CV, Shashikala IS, Li Q. Liquid crystal trimers composed of banana-shaped and rodlike anisometric segments: synthesis and characterization. Chem Mater. 2007;19(26):6561–6568. doi: 10.1021/cm702698e
  • Chen D, Porada JH, Hooper JB, et al. Chiral heliconical ground state of nanoscale pitch in a nematic liquid crystal of achiral molecular dimers. Proc Natl Acad Sci USA. 2013;110(40):15931–15936. doi: 10.1073/pnas.1314654110
  • Borshch V, Kim YK, Xiang J, et al. Nematic twist-bend phase with nanoscale modulation of molecular orientation. Nat Commun. 2013;4(1):2635. doi: 10.1038/ncomms3635
  • Salamończyk M, Mandle RJ, Makal A, et al. Double helical structure of the twist-bend nematic phase investigated by resonant X-ray scattering at the carbon and sulfur K-edges. Soft Matter. 2018;14(48):9760–9763. doi: 10.1039/C8SM01215F
  • Zhu C, Tuchband MR, Young A, et al. Resonant carbon K-edge soft X-ray scattering from lattice-free heliconical molecular ordering: soft dilative elasticity of the twist-bend liquid crystal phase. Phys Rev Lett. 2016;116(14):147803. doi: 10.1103/PhysRevLett.116.147803
  • Cao Y, Feng J, Nallapaneni A, et al. Deciphering helix assembly in the heliconical nematic phase via tender resonant X-ray scattering. J Mater Chem C. 2021;9(31):10020–10028. doi: 10.1039/D1TC02027G
  • Salili SM, Kim C, Sprunt S, et al. Flow properties of a twist-bend nematic liquid crystal. RSC Adv. 2014;4(101):57419–57423. doi: 10.1039/C4RA10008E
  • Challa PK, Borshch V, Parri O, et al. Twist-bend nematic liquid crystals in high magnetic fields. Phys Rev E. 2014;89(6):060501. doi: 10.1103/PhysRevE.89.060501
  • Zhou J, Tang W, Arakawa Y, et al. Viscoelastic properties of a thioether-based heliconical twist–bend nematogen. Phys Chem Chem Phys. 2020;22(17):9593–9599. doi: 10.1039/C9CP06861A
  • Kumar MP, Kula P, Dhara S. Smecticlike rheology and pseudolayer compression elastic constant of a twist-bend nematic liquid crystal. Phys Rev Mater. 2020;4(11):115601. doi: 10.1103/PhysRevMaterials.4.115601
  • Tang W, Deng M, Kougo J, et al. Extreme modulation of liquid crystal viscoelasticity via altering the ester bond direction. J Mater Chem C. 2021;9(31):9990–9996. doi: 10.1039/D1TC01636A
  • Merkel K, Loska B, Arakawa Y, et al. How do intermolecular interactions evolve at the nematic to twist–bent phase transition? Int J Mol Sci. 2022;23(19):11018. doi: 10.3390/ijms231911018
  • Samulski ET, Vanakaras AG, Photinos DJ. The twist bend nematic: a case of mistaken identity. Liq Cryst. 2020;47(13):2092–2097. doi: 10.1080/02678292.2020.1795943
  • Samulski ET, Reyes-Arango D, Vanakaras AG, et al. All structures great and small: nanoscale modulations in nematic liquid crystals. Nanomaterials. 2022;12(1):93. doi: 10.3390/nano12010093
  • Henderson PA, Imrie CT. Methylene-linked liquid crystal dimers and the twist-bend nematic phase. Liq Cryst. 2011;38(11–12):1407–1414. doi: 10.1080/02678292.2011.624368
  • Šepelj M, Baumeister U, Ivšić T, et al. Effects of geometry and electronic structure on the molecular self-assembly of naphthyl-based dimers. J Phys Chem B. 2013;117(29):8918–8929. doi: 10.1021/jp404533p
  • Mandle RJ, Davis EJ, Lobato SA, et al. Synthesis and characterisation of an unsymmetrical, ether-linked, fluorinated bimesogen exhibiting a new polymorphism containing the NTB or ‘twist-bend’ phase. Phys Chem Chem Phys. 2014;16(15):6907–6915. doi: 10.1039/c4cp00172a
  • Mandle RJ, Davis EJ, Archbold CT, et al. Apolar bimesogens and the incidence of the twist–bend nematic phase. Chem Eur J. 2015;21(22):8158–8167. doi: 10.1002/chem.201500423
  • Mandle RJ, Goodby JW. Dependence of mesomorphic behaviour of methylene-linked dimers and the stability of the NTB/NX phase upon choice of mesogenic units and terminal chain length. Chem Eur J. 2016;22(27):9366–9374. doi: 10.1002/chem.201601146
  • Sebastián N, López DO, Robles-Hernández B, et al. Dielectric, calorimetric and mesophase properties of 1′′-(2′,4-difluorobiphenyl-4′-yloxy)-9′′-(4-cyanobiphenyl-4′-yloxy)nonane: an odd liquid crystal dimer with a monotropic mesophase having the characteristics of a twist-bend nematic phase. Phys Chem Chem Phys. 2014;16(39):21391–21406. doi: 10.1039/C4CP03462G
  • Tamba MG, Salili SM, Zhang C, et al. A fibre forming smectic twist–bent liquid crystalline phase. RSC Adv. 2015;5(15):11207–11211. doi: 10.1039/C4RA14669G
  • Ahmed Z, Welch C, Mehl GH. The design and investigation of the self-assembly of dimers with two nematic phases. RSC Adv. 2015;5(113):93513–93521. doi: 10.1039/C5RA18118F
  • Mandle RJ, Voll CC, Lewis DJ, et al. Etheric bimesogens and the twist-bend nematic phase. Liq Cryst. 2016;43(1):13–21. doi: 10.1080/02678292.2015.1091095
  • Mandle RJ, Archbold CT, Sarju JP, et al. The dependency of nematic and twist-bend mesophase formation on bend angle. Sci Rep. 2016;6(1):36682. doi: 10.1038/srep36682
  • Paterson DA, Xiang J, Singh G, et al. Reversible isothermal twist–bend nematic–nematic phase transition driven by the photoisomerization of an azobenzene-based nonsymmetric liquid crystal dimer. J Am Chem Soc. 2016;138(16):5283–5289. doi: 10.1021/jacs.5b13331
  • Paterson DA, Walker R, Abberley JP, et al. Azobenzene-based liquid crystal dimers and the twist-bend nematic phase. Liq Cryst. 2017;44(12–13):2060–2078. doi: 10.1080/02678292.2017.1366075
  • Abberley JP, Storey JM, Imrie CT. Structure-property relationships in azobenzene-based twist-bend nematogens. Liq Cryst. 2019;46(13–14):2102–2114. doi: 10.1080/02678292.2019.1643935
  • Ivšić T, Baumeister U, Dokli I, et al. Sensitivity of the NTB phase formation to the molecular structure of imino-linked dimers. Liq Cryst. 2017;44(1):93–105. doi: 10.1080/02678292.2016.1225832
  • Abberley JP, Killah R, Walker R, et al. Heliconical smectic phases formed by achiral molecules. Nat Commun. 2018;9(1):228. doi: 10.1038/s41467-017-02626-6
  • Knežević A, Sapunar M, Buljan A, et al. Fine-tuning the effect of π–π interactions on the stability of the NTB phase. Soft Matter. 2018;14(42):8466–8474. doi: 10.1039/C8SM01569D
  • Watanabe K, Tamura T, Kang S, et al. Twist bend nematic liquid crystals prepared by one-step condensation of 4-(4-pentylcyclohexyl) benzoic acid and alkyl diol. Liq Cryst. 2018;45(6):924–930. doi: 10.1080/02678292.2018.1435830
  • Lesac A, Baumeister U, Dokli I, et al. Geometric aspects influencing N-NTB transition-implication of intramolecular torsion. Liq Cryst. 2018;45(7):1101–1110. doi: 10.1080/02678292.2018.1453556
  • Arakawa Y, Komatsu K, Tsuji H. Twist-bend nematic liquid crystals based on thioether linkage. New J Chem. 2019;43(17):6786–6793. doi: 10.1039/C8NJ06456C
  • Arakawa Y, Tsuji H. Selenium-linked liquid crystal dimers for twist-bend nematogens. J Mol Liq. 2019;289:111097. doi: 10.1016/j.molliq.2019.111097
  • Cruickshank E, Salamończyk M, Pociecha D, et al. Sulfur-linked cyanobiphenyl-based liquid crystal dimers and the twist-bend nematic phase. Liq Cryst. 2019;46(10):1595–1609. doi: 10.1080/02678292.2019.1641638
  • Arakawa Y, Komatsu K, Inui S, et al. Thioether-linked liquid crystal dimers and trimers: the twist-bend nematic phase. J Mol Struct. 2020;1199:126913. doi: 10.1016/j.molstruc.2019.126913
  • Arakawa Y, Ishida Y, Tsuji H. Ether- and thioether-linked naphthalene-based liquid-crystal dimers: influence of chalcogen linkage and mesogenic-arm symmetry on the incidence and stability of the twist–bend nematic phase. Chem Eur J. 2020;26(17):3767–3775. doi: 10.1002/chem.201905208
  • Forsyth E, Paterson DA, Cruickshank E, et al. Liquid crystal dimers and the twist-bend nematic phase: on the role of spacers and terminal alkyl chains. J Mol Liq. 2020;320:114391. doi: 10.1016/j.molliq.2020.114391
  • Arakawa Y, Komatsu K, Ishida Y, et al. Carbonyl-and thioether-linked cyanobiphenyl-based liquid crystal dimers exhibiting twist-bend nematic phases. Tetrahedron. 2021;81:131870. doi: 10.1016/j.tet.2020.131870
  • Arakawa Y, Komatsu K, Feng J, et al. Distinct twist-bend nematic phase behaviors associated with the ester-linkage direction of thioether-linked liquid crystal dimers. Mater Adv. 2021;2(1):261–272. doi: 10.1039/D0MA00746C
  • Alshammari AF, Pociecha D, Walker R, et al. New patterns of twist-bend liquid crystal phase behaviour: the synthesis and characterisation of the 1-(4-cyanobiphenyl-4-yl)-10-(4-alkylaniline-benzylidene-4-oxy) decanes (Cb10o·m). Soft Matter. 2022;18(25):4679–4688. doi: 10.1039/D2SM00162D
  • Walker R, Pociecha D, Salamonczyk M, et al. Intrinsically chiral twist‐bend nematogens: interplay of molecular and structural chirality in the NTB phase. Chemphyschem. 2023;24(6):e202200807. doi: 10.1002/cphc.202300105
  • Mandle RJ, Goodby JW. Progression from nano to macro science in soft matter systems: dimers to trimers and oligomers in twist-bend liquid crystals. RSC Adv. 2016;6(41):34885–34893. doi: 10.1039/C6RA03594A
  • Parsouzi Z, Babakhanova G, Rajabi M, et al. Pretransitional behavior of viscoelastic parameters at the nematic to twist-bend nematic phase transition in flexible n-mers. Phys Chem Chem Phys. 2019;21(24):13078–13089. doi: 10.1039/C9CP00984A
  • Majewska MM, Forsyth E, Pociecha D, et al. Controlling spontaneous chirality in achiral materials: liquid crystal oligomers and the heliconical twist-bend nematic phase. Chem Commun. 2022;58(34):5285–5288. doi: 10.1039/D1CC07012F
  • Tuchband MR, Paterson DA, Salamończyk M, et al. Distinct differences in the nanoscale behaviors of the twist–bend liquid crystal phase of a flexible linear trimer and homologous dimer. Proc Natl Acad Sci USA. 2019;116(22):10698–10704. doi: 10.1073/pnas.1821372116
  • Arakawa Y, Komatsu K, Shiba T, et al. Phase behaviors of classic liquid crystal dimers and trimers: alternate induction of smectic and twist-bend nematic phases depending on spacer parity for liquid crystal trimers. J Mol Liq. 2021;326:115319. doi: 10.1016/j.molliq.2021.115319
  • Arakawa Y, Komatsu K, Tsuji H. 2, 7-substituted fluorenone-based liquid crystal trimers: twist-bend nematic phase induced by outer thioether linkage. Phase Transit. 2022;95(4):331–339. doi: 10.1080/01411594.2022.2044040
  • Arakawa Y, Komatsu K, Ishida Y, et al. Thioether-linked liquid crystal trimers: odd–even effects of spacers and the influence of thioether bonds on phase behavior. Materials. 2022;15(5):1709. doi: 10.3390/ma15051709
  • Mandle RJ, Goodby JW. A nanohelicoidal nematic liquid crystal formed by a non-linear duplexed hexamer. Angew Chem Int Ed. 2018;57(24):7096–7100. doi: 10.1002/anie.201802881
  • Stevenson WD, An J, Zeng XB, et al. Twist-bend nematic phase in biphenylethane-based copolyethers. Soft Matter. 2018;14(16):3003–3011. doi: 10.1039/C7SM02525D
  • Jansze SM, Martínez-Felipe A, Storey JMD, et al. A twist-bend nematic phase driven by hydrogen bonding. Angew Chem Int Ed. 2015;127(2):653–656. doi: 10.1002/ange.201409738
  • Walker R, Pociecha D, Abberley JP, et al. Spontaneous chirality through mixing achiral components: A twist-bend nematic phase driven by hydrogen-bonding between unlike components. Chem Commun. 2018;54(27):3383–3386. doi: 10.1039/C8CC00525G
  • Chen D, Nakata M, Shao R, et al. Twist-bend heliconical chiral nematic liquid crystal phase of an achiral rigid bent-core mesogen. Phys Rev E. 2014;89(2):022506. doi: 10.1103/PhysRevE.89.022506
  • Sreenilayam SP, Yadav N, Panarin YP, et al. Electrooptic, pyroelectric and dielectric spectroscopic studies of nematic and twist bend nematic phases of achiral hockey-shaped bent-core liquid crystal. J Mol Liq. 2022;351:118632. doi: 10.1016/j.molliq.2022.118632
  • Greco C, Luckhurst GR, Ferrarini A. Molecular geometry, twist-bend nematic phase and unconventional elasticity: a generalised maier-saupe theory. Soft Matter. 2014;10:9318–9323. doi: 10.1039/C4SM02173H
  • Tomczyk W, Longa L. Role of molecular bend angle and biaxiality in the stabilization of the twist-bend nematic phase. Soft Matter. 2020;16(18):4350–4357. doi: 10.1039/D0SM00078G
  • Archbold CT, Davis EJ, Mandle RJ, et al. Chiral dopants and the twist-bend nematic phase–induction of novel mesomorphic behaviour in an apolar bimesogen. Soft Matter. 2015;11(38):7547–7557. doi: 10.1039/C5SM01935D
  • Dawood AA, Grossel MC, Luckhurst GR, et al. On the twist-bend nematic phase formed directly from the isotropic phase. Liq Cryst. 2016;43(1):2–12. doi: 10.1080/02678292.2015.1114158
  • Dawood AA, Grossel MC, Luckhurst GR, et al. Twist-bend nematics, liquid crystal dimers, structure–property relations. Liq Cryst. 2017;44(1):106–126. doi: 10.1080/02678292.2017.1290576
  • Arakawa Y, Komatsu K, Shiba T, et al. Methylene-and thioether-linked cyanobiphenyl-based liquid crystal dimers CBnSCB exhibiting room temperature twist-bend nematic phases and glasses. Mater Adv. 2021;2(5):1760–1773. doi: 10.1039/D0MA00990C
  • Arakawa Y, Arai Y, Horita K, et al. Twist-bend nematic phase behavior of cyanobiphenyl-based dimers with propane, ethoxy, and ethylthio spacers. Crystals. 2022;12(12):1734. doi: 10.3390/cryst12121734
  • Wang D, Liu J, Zhao W, et al. Facile synthesis of liquid crystal dimers bridged with a phosphonic group. Chem Eur J. 2022;28(70):e202202146. doi: 10.1002/chem.202202146
  • Hird M. Fluorinated liquid crystals–properties and applications. Chem Soc Rev. 2007;36(12):2070–2095. doi: 10.1039/b610738a
  • Dąbrowski R, Kula P, Herman J. High birefringence liquid crystals. Crystals. 2013;3(3):443–482. doi: 10.3390/cryst3030443
  • Arakawa Y, Kang S, Watanabe J, et al. Synthesis, phase-transition behaviors, and birefringence properties of fluorinated diphenyl–diacetylene derivatives. Chem Lett. 2014;43(12):1858–1860. doi: 10.1246/cl.140779
  • Arakawa Y, Kang S, Tsuji H, et al. Development of novel bistolane-based liquid crystalline molecules with an alkylsulfanyl group for highly birefringent materials. RSC Adv. 2016;6(20):16568–16574. doi: 10.1039/C5RA25122B
  • Arakawa Y, Tsuji H. The effect of fluorine substitutions on the refractive index properties for π-conjugated calamitic nematic materials. Phase Transit. 2017;90(6):549–556. doi: 10.1080/01411594.2016.1233555
  • Yamada S, Miyano K, Konno T, et al. Fluorine-containing bistolanes as light-emitting liquid crystalline molecules. Org Biomol Chem. 2017;15(28):5949–5958. doi: 10.1039/C7OB01369H
  • Mandle RJ, Cowling SJ, Goodby JW. Rational design of rod‐like liquid crystals exhibiting two nematic phases. Chem Eur J. 2017;23(58):14554–14562. doi: 10.1002/chem.201702742
  • Kamal SJ, Salleh NM, Ekramul Mahmud HNM, et al. Liquid crystal and photophysical properties of laterally fluorinated azo-ester materials. Liq Cryst. 2021;49(5):633–646. doi: 10.1080/02678292.2021.1995060
  • Pytlarczyk M, Herman J, Arakawa Y, et al. Deuterated liquid crystals–practical synthesis of deuterium labeled 4-alkyl-4″-isothiocyanato-[1, 1ʹ: 4ʹ, 1″] terphenyls. J Mol Liq. 2022;345:117847. doi: 10.1016/j.molliq.2021.117847
  • Li J, Wang Z, Deng M, et al. General phase-structure relationship in polar rod-shaped liquid crystals: importance of shape anisotropy and dipolar strength. Giant. 2022;11:100109. doi: 10.1016/j.giant.2022.100109
  • Cruickshank E, Walker R, Storey JMD, et al. The effect of a lateral alkyloxy chain on the ferroelectric nematic phase. RSC Adv. 2022;12(45):29482–29490. doi: 10.1039/D2RA05628C
  • Tufaha N, Cruickshank E, Pociecha D, et al. Molecular shape, electronic factors, and the ferroelectric nematic phase: investigating the impact of structural modifications. Chem Eur J. 2023;29(28):e202300073. doi: 10.1002/chem.202300073
  • Arakawa Y, Shiba T, Igawa K, et al. 4′-Alkylseleno-4-cyanobiphenyls, nSeCB: synthesis and substituent effects on the phase-transition and liquid crystalline behaviors. Cryst Eng Comm. 2022;24(43):7592–7601. doi: 10.1039/D2CE00551D
  • Sheldrick GM. Crystal structure refinement with SHELXL. Acta Crystallogr Sect A. 2008;64:112–122. doi: 10.1107/S0108767307043930
  • Malpezzi L, Brückner S, Galbiati E, et al. The structure of α, ω-bis(4-cyanobiphenyl-4′-oxy)heptane. Mol Cryst Liq Cryst. 1991;195(1):179–184. doi: 10.1080/00268949108030900
  • Hori K, Iimuro M, Nakao A, et al. Conformational diversity of symmetric dimer mesogens, α, ω-bis(4, 4′-cyanobiphenyl)octane,-nonane, α, ω-bis(4-cyanobiphenyl-4′-yloxycarbonyl)propane, and-hexane in crystal structures. J Mol Struct. 2004;699(1–3):23–29. doi: 10.1016/j.molstruc.2004.05.003

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.