851
Views
3
CrossRef citations to date
0
Altmetric
Design of New Materials

Can even-membered liquid crystal dimers exhibit the twist-bend nematic phase? The preparation and properties of disulphide and thioether linked dimers

ORCID Icon, , & ORCID Icon
Pages 1362-1374 | Received 10 May 2023, Accepted 21 Jul 2023, Published online: 13 Aug 2023

References

  • Imrie CT, Henderson PA. Liquid crystal dimers and higher oligomers: between monomers and polymers. Chem Soc Rev. 2007;36(12):2096–2124. doi: 10.1039/b714102e
  • Imrie CT, Henderson PA, Yeap GY. Liquid crystal oligomers: going beyond dimers. Liq Cryst. 2009;36(6–7):755–777. doi: 10.1080/02678290903157455
  • Luckhurst GR. Liquid-crystal dimers and oligomers - experiment and theory. Macromol Symp. 1995;96:1–26. doi: 10.1002/masy.19950960103
  • Cestari M, Diez-Berart S, Dunmur DA, et al. Phase behavior and properties of the liquid-crystal dimer 1 ’‘,7’’-bis(4-cyanobiphenyl-4 ’- yl) heptane: A twist-bend nematic liquid crystal. Phys Rev E. 2011;84:031704. doi: 10.1103/PhysRevE.84.031704
  • Borshch V, Kim YK, Xiang J, et al. Nematic twist-bend phase with nanoscale modulation of molecular orientation. Nature Commun. 2013;4(1):2635. doi: 10.1038/ncomms3635
  • Zhu CH, Tuchband MR, Young A, et al. Resonant Carbon K-Edge soft X-Ray scattering from lattice-free heliconical molecular ordering: soft dilative elasticity of the twist-bend liquid crystal phase. Phys Rev Lett. 2016;116(14):147803. doi: 10.1103/PhysRevLett.116.147803
  • Meyer RB. Structural problems in liquid crystal physics, les houches summer school in theoretical physics. In: Balian R, W G, editors. Molecular fluids. New York: Gordon and Breach; 1976. p. 273–373.
  • Dozov I. On the spontaneous symmetry breaking in the mesophases of achiral banana-shaped molecules. Europhys Lett. 2001;56(2):247–253. doi: 10.1209/epl/i2001-00513-x
  • Archbold CT, Davis EJ, Mandle RJ, et al. Chiral dopants and the twist-bend nematic phase - induction of novel mesomorphic behaviour in an apolar bimesogen. Soft Matter. 2015;11:7547–7557. doi: 10.1039/C5SM01935D
  • Kasian NA, Lisetski LN, Gvozdovskyy IA. Twist-bend nematics and heliconical cholesterics: a physico-chemical analysis of phase transitions and related specific properties. Liq Cryst. 2022;49(1):142–152. doi: 10.1080/02678292.2021.1970838
  • Walker R, Pociecha D, Salamonczyk M, et al. Intrinsically chiral twist-bend nematogens: interplay of molecular and structural chirality in the NTB phase. Chemphyschem. 2023;24:e202300105. doi: 10.1002/cphc.202300105
  • Walker R, Pociecha D, Storey JMD, et al. The chiral twist-bend nematic phase (N*(TB)). Chem Eur J. 2019;25:13329–13335. doi: 10.1002/chem.201903014
  • Alshammari AF, Pociecha D, Walker R, et al. New patterns of twist-bend liquid crystal phase behaviour: the synthesis and characterisation of the 1-(4-cyanobiphenyl-4 ’-yl)-10-(4-alkylaniline-benzylidene-4 ’-oxy)decanes (CB10O.m). Soft Matter. 2022;18:4679–4688. doi: 10.1039/D2SM00162D
  • Forsyth E, Paterson DA, Cruickshank E, et al. Liquid crystal dimers and the twist-bend nematic phase: on the role of spacers and terminal alkyl chains. J Molec Liq. 2020;320:114391. doi: 10.1016/j.molliq.2020.114391
  • Pociecha D, Vaupotic N, Majewska M, et al. Photonic bandgap in achiral liquid crystals-a twist on a twist. Adv Mater. 2021;33:2103288. doi: 10.1002/adma.202103288
  • Walker R, Majewska M, Pociecha D, et al. Twist-Bend nematic glasses: the synthesis and characterisation of pyrene-based nonsymmetric dimers. Chemphyschem. 2021;22(5):461–470. doi: 10.1002/cphc.202000993
  • Walker R, Pociecha D, Strachan GJ, et al. Molecular curvature, specific intermolecular interactions and the twist-bend nematic phase: the synthesis and characterisation of the 1-(4-cyanobiphenyl-4-yl)-6-(4-alkylanilinebenzylidene-4-oxy)hexanes (CB6O.m). Soft Matter. 2019;15:3188–3197. doi: 10.1039/C9SM00026G
  • Mandle RJ. Designing liquid-crystalline oligomers to exhibit twist-bend modulated nematic phases. Chem Rec. 2018;18(9):1341–1349. doi: 10.1002/tcr.201800010
  • Mandle RJ. A Ten-Year perspective on twist-bend nematic materials. Molecules. 2022;27(9):2689. doi: 10.3390/molecules27092689
  • Pocock EE, Mandle RJ, Goodby JW. Molecular shape as a means to control the incidence of the nanostructured twist bend phase. Soft Matter. 2018;14(13):2508–2514. doi: 10.1039/C7SM02364B
  • Paterson DA, Walker R, Abberley JP, et al. Azobenzene-based liquid crystal dimers and the twist-bend nematic phase. Liq Cryst. 2017;44:2060–2078. doi: 10.1080/02678292.2017.1366075
  • Knezevic A, Dokli I, Novak J, et al. Fluorinated twist-bend nematogens: the role of intermolecular interaction. Liq Cryst. 2021;48(5):756–766. doi: 10.1080/02678292.2020.1817585
  • Babakhanova G, Wang H, Rajabi M, et al. Elastic and electro-optical properties of flexible fluorinated dimers with negative dielectric anisotropy. Liq Cryst. 2022;49(7–9):982–994. doi: 10.1080/02678292.2021.1973602
  • Chen D, Nakata M, Shao R, et al. Twist-bend heliconical chiral nematic liquid crystal phase of an achiral rigid bent-core mesogen. Phys Rev E. 2014;89(2):022506. doi: 10.1103/PhysRevE.89.022506
  • Sreenilayam SP, Panov VP, Vij JK, et al. The N-TB phase in an achiral asymmetrical bent-core liquid crystal terminated with symmetric alkyl chains. Liq Cryst. 2017;44:244–253. doi: 10.1080/02678292.2016.1253878
  • Walker R, Pociecha D, Abberley JP, et al. Spontaneous chirality through mixing achiral components: a twist-bend nematic phase driven by hydrogen-bonding between unlike components. Chem Commun. 2018;54(27):3383–3386. doi: 10.1039/C8CC00525G
  • Jansze SM, Martinez-Felipe A, Storey JMD, et al. A twist-bend nematic phase driven by hydrogen bonding. Angew Chem Int Ed. 2015;54:643–646. doi: 10.1002/anie.201409738
  • Walker R, Pociecha D, Crawford CA, et al. Hydrogen bonding and the design of twist-bend nematogens. J Molec Liq. 2020;303:112630. doi: 10.1016/j.molliq.2020.112630
  • Mandle RJ. The dependency of twist-bend nematic liquid crystals on molecular structure: a progression from dimers to trimers, oligomers and polymers. Soft Matter. 2016;12(38):7883–7901. doi: 10.1039/C6SM01772J
  • Mandle RJ, Goodby JW. Progression from nano to macro science in soft matter systems: dimers to trimers and oligomers in twist-bend liquid crystals. RSC Adv. 2016;6(41):34885–34893. doi: 10.1039/C6RA03594A
  • Mandle RJ, Goodby JW. A nanohelicoidal nematic liquid crystal formed by a non-linear duplexed hexamer. Angew Chem Int Ed. 2018;57(24):7096–7100. doi: 10.1002/anie.201802881
  • Simpson FP, Mandle RJ, Moore JN, et al. Investigating the cusp between the nano-and macro-sciences in supermolecular liquid-crystalline twist-bend nematogens. J Mater Chem C. 2017;5:5102–5110. doi: 10.1039/C7TC00516D
  • Tuchband MR, Paterson DA, Salamonczykc M, et al. Distinct differences in the nanoscale behaviors of the twist-bend liquid crystal phase of a flexible linear trimer and homologous dimer. Proc Nat Acad Sci USA. 2019;116:10698–10704. doi: 10.1073/pnas.1821372116
  • Majewska MM, Forsyth E, Pociecha D, et al. Controlling spontaneous chirality in achiral materials: liquid crystal oligomers and the heliconical twist-bend nematic phase. Chem Commun. 2022;58(34):5285–5288. doi: 10.1039/D1CC07012F
  • Stevenson WD, An JG, Zeng XB, et al. Twist-bend nematic phase in biphenylethane-based copolyethers. Soft Matter. 2018;14(16):3003–3011. doi: 10.1039/C7SM02525D
  • Arakawa Y, Komatsu K, Inui S, et al. Thioether-linked liquid crystal dimers and trimers: the twist-bend nematic phase. J Mol Struct. 2020;1199:1199. doi: 10.1016/j.molstruc.2019.126913
  • Arakawa Y, Komatsu K, Shiba T, et al. Methylene- and thioether-linked cyanobiphenyl-based liquid crystal dimers CBnSCB exhibiting room temperature twist-bend nematic phases and glasses. Mater Adv. 2021;2(5):1760–1773. doi: 10.1039/D0MA00990C
  • Arakawa Y, Ishida Y, Komatsu K, et al. Thioether-linked benzylideneaniline-based twist-bend nematic liquid crystal dimers: insights into spacer lengths, mesogenic arm structures, and linkage types. Tetrahedron. 2021;95:132351. doi: 10.1016/j.tet.2021.132351
  • Arakawa Y, Ishida Y, Tsuji H. Ether- and thioether-linked naphthalene-based liquid-crystal dimers: influence of chalcogen linkage and mesogenic-arm symmetry on the incidence and stability of the twist-bend nematic phase. Chem Eur J. 2020;26:3767–3775. doi: 10.1002/chem.201905208
  • Arakawa Y, Komatsu K, Feng J, et al. Distinct twist-bend nematic phase behaviors associated with the ester-linkage direction of thioether-linked liquid crystal dimers. Mater Adv. 2021;2(1):261–272. doi: 10.1039/D0MA00746C
  • Arakawa Y, Komatsu K, Ishida Y, et al. Carbonyl- and thioether-linked cyanobiphenyl-based liquid crystal dimers exhibiting twist-bend nematic phases. Tetrahedron. 2021;81:131870. doi: 10.1016/j.tet.2020.131870
  • Arakawa Y, Komatsu K, Ishida Y, et al. Thioether-linked liquid crystal trimers: odd-even effects of spacers and the influence of thioether bonds on phase behavior. Materials. 2022;15:1709. doi: 10.3390/ma15051709
  • Arakawa Y, Komatsu K, Ishida Y, et al. Thioether-linked azobenzene-based liquid crystal dimers exhibiting the twist-bend nematic phase over a wide temperature range. Liq Cryst. 2021;48(5):641–652. doi: 10.1080/02678292.2020.1800848
  • Arakawa Y, Komatsu K, Shiba T, et al. Phase behaviors of classic liquid crystal dimers and trimers: alternate induction of smectic and twist-bend nematic phases depending on spacer parity for liquid crystal trimers. J Molec Liq. 2021;326:115319. doi: 10.1016/j.molliq.2021.115319
  • Cruickshank E, Salamonczyk M, Pociecha D, et al. Sulfur-linked cyanobiphenyl-based liquid crystal dimers and the twist-bend nematic phase. Liq Cryst. 2019;46(10):1595–1609. doi: 10.1080/02678292.2019.1641638
  • Cruickshank E, Anderson K, Storey JMD, et al. Helical phases assembled from achiral molecules: twist-bend nematic and helical filamentary B-4 phases formed by mesogenic dimers. J Molec Liq. 2022;346:118180. doi: 10.1016/j.molliq.2021.118180
  • Cruickshank E, Strachan GJ, Majewska MM, et al. The effects of alkylthio chains on the properties of symmetric liquid crystal dimers. New J Chem. 2023;47(15):7356–7368. doi: 10.1039/D2NJ06252F
  • Yeap GY, Osman F, Mahmood WAK, et al. Molecular structure-thermal behaviour relationship of dimers consisting of different terminal substituents and sulphur-sulphur linking group. J Mol Struct. 2014;1074:666–672. doi: 10.1016/j.molstruc.2014.03.071
  • Osman F, Yeap GY, Takeuchi D. Synthesis and mesomorphic behaviour of new disulphide bridge 4-n-alkoxybenzylidine-4 ’-bromoaniline. Liq Cryst. 2014;41:106–112. doi: 10.1080/02678292.2013.839833
  • Yap PW, Osman F, Yeap GY, et al. Non-linear disulphide-centred S-shaped oligomers with inner and outer spacers connected by aromatic azo moieties. Liq Cryst. 2023;50:379–392. doi: 10.1080/02678292.2022.2127161
  • Lee HC, Lu ZB, Henderson PA, et al. Cholesteryl-based liquid crystal dimers containing a sulfur-sulfur link in the flexible spacer. Liq Cryst. 2012;39:259–268. doi: 10.1080/02678292.2011.641753
  • Kundu B, Pal SK, Kumar S, et al. Splay and bend elastic constants in the nematic phase of some disulfide bridged dimeric compounds. Phys Rev E. 2010;82(6):061703. doi: 10.1103/PhysRevE.82.061703
  • Kundu B, Pal SK, Kumar S, et al. Unusual odd-even effects depending on the monomer chain length in nematic liquid crystals made of rod-like dimers. Eur Phys Lett. 2009;85(3):36002. doi: 10.1209/0295-5075/85/36002
  • Pal SK, Raghunathan VA, Kumar S. Phase transitions in novel disulphide-bridged alkoxycyanobiphenyl dimers. Liq Cryst. 2007;34(2):135–141. doi: 10.1080/02678290601061280
  • Henderson PA, Imrie CT. Methylene-linked liquid crystal dimers and the twist-bend nematic phase. Liq Cryst. 2011;38(11–12):1407–1414. doi: 10.1080/02678292.2011.624368
  • Gibb CJ, Storey JM, Imrie CT. A convenient one-pot synthesis, and characterisation of the omega-bromo-1-(4-cyanobiphenyl-4’-yl) alkanes (CBnBr). Liq Cryst. 2022;49:1706–1716. doi: 10.1080/02678292.2022.2084568
  • Frisch MJ, Trucks GW, Schlegel HB, et al. Gaussian 09 (Revision D.01). Wallingford (CT): Gaussian Inc; 2016.
  • Macrae CF, Sovago I, Cottrell SJ, et al. Mercury 4.0: from visualization to analysis, design and prediction. J Appl Cryst. 2020;53(1):226–235. doi: 10.1107/S1600576719014092
  • Tarini M, Cignoni P, Montani C. Ambient occlusion and edge cueing to enhance real time molecular visualization. IEEE Trans Vis Comp Graphics. 2006;12:1237–1244. doi: 10.1109/TVCG.2006.115
  • Dennington R, Keith T, Millam J. Gauss view, Version 5. Shawnee Mission (KS): Semichem Inc; 2009.
  • Cruickshank E. [ PhD thesis]. University of Aberdeen; 2021.
  • Jorgensen FS, Snyder JP. Disulfide conformational-analysis - nature of the S-S rotation barrier. Tetrahedron. 1979;35:1399–1407. doi: 10.1016/0040-4020(79)85034-6
  • Paterson DA, Abberley JP, Harrison WT, et al. Cyanobiphenyl-based liquid crystal dimers and the twist-bend nematic phase. Liq Cryst. 2017;44:127–146. doi: 10.1080/02678292.2016.1274293
  • Date RW, Imrie CT, Luckhurst GR, et al. Smectogenic dimeric liquid-crystals - the preparation and properties of the ⍺,ω-bis(4-normal-alkylanilinebenzylidine-4’-oxy)alkane. Liq Cryst. 1992;12:203–238. doi: 10.1080/02678299208030393
  • Emsley JW, Luckhurst GR, Shilstone GN. The orientational order of nematogenic molecules with a flexible core - a dramatic odd even effect. Molec Phys. 1984;53(4):1023–1028. doi: 10.1080/00268978400102811
  • Imrie CT. Laterally substituted dimeric liquid-crystals. Liq Cryst. 1989;6:391–396. doi: 10.1080/02678298908034184
  • Donaldson T, Staesche H, Lu ZB, et al. Symmetric and non-symmetric chiral liquid crystal dimers. Liq Cryst. 2010;37(8):1097–1110. doi: 10.1080/02678292.2010.494412
  • Paterson DA, Xiang J, Singh G, et al. Reversible isothermal twist-bend nematic-nematic phase transition driven by the photoisomerization of an azobenzene-based nonsymmetric liquid crystal dinner. J Am Chem Soc. 2016;138:5283–5289. doi: 10.1021/jacs.5b13331
  • Pociecha D, Crawford CA, Paterson DA, et al. Critical behavior of the optical birefringence at the nematic to twist-bend nematic phase transition. Phys Rev E. 2018;98(5):052706. doi: 10.1103/PhysRevE.98.052706
  • Riande E, Guzman J. Statistical properties of alternating copolymers .1. Dipole-moments of poly(thiodiethylene glycol) chains. Macromolec. 1979;12:952–956. doi: 10.1021/ma60071a033
  • Emsley JW, De Luca G, Lesage A, et al. The structure and conformation of a mesogenic compound between almost zero and almost complete orientational order. Liq Cryst. 2007;34(9):1071–1093. doi: 10.1080/02678290701565834
  • Bondi A. Van der Waals volumes and radii. J Phys Chem. 1964;68(3):441–451. doi: 10.1021/j100785a001
  • Martinez-Gomez A, Perez E, Bello A. Synthesis of copolybibenzoates with thioether and ether groups in the flexible spacers. Polym Int. 2005;54(8):1196–1204. doi: 10.1002/pi.1831