98
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Influence of different small styryl molecules on electro-optical characteristics of reverse-mode polymer stabilised cholesteric liquid crystal devices

, , , , &
Pages 2458-2467 | Received 31 Jul 2023, Accepted 13 Sep 2023, Published online: 26 Sep 2023

References

  • Kitzerow H. Polymer-dispersed liquid crystal from the nematic curvilinear aligned phase to ferroelectric films. Liq Cryst. 1994;16:1–31. doi: 10.1080/02678299408036517
  • Lagerwall J, Scalia G. A new era for liquid crystal research: applications of liquid crystals in soft matter nano-, bio- and microtechnology. Curr Appl Phys. 2012;12(6):1387–1412. doi: 10.1016/j.cap.2012.03.019
  • Guo S, Liang X, Zhang C, et al. Preparation of a thermally light-transmittance-controllable film from a coexistent system of polymer-dispersed and polymer-stabilized liquid crystals. ACS Appl Mater Interfaces. 2017;9(3):2942–2947. doi: 10.1021/acsami.6b13366
  • Sun H, Xie Z, Ju C, et al. Dye-doped electrically smart windows based on polymer-stabilized liquid crystal. Polymers. 2019;11(4):694–703. doi: 10.3390/polym11040694
  • Sharma V, Kumar P, Chinky, et al. Preparation and electrooptic study of reverse mode polymer dispersed liquid crystal: performance augmentation with the doping of nanoparticles and dichroic dye. J Appl Polym Sci. 2020;137:48745. doi: 10.1002/app.48745
  • Hu W, Chen M, Zhang L, et al. Broadband reflection in polymer-stabilized cholesteric liquid crystals via thiol-acrylate chemistry. Angew Chem Int Ed. 2019;58:6698–6702. doi: 10.1002/anie.201902681
  • Zhou Y, You Y, Liao X, et al. Effect of polymer network topology on the electro-optical performance of polymer stabilized liquid crystal (PSLC) devices. Macromol Chem Phys. 2020;221(18):2000185. doi: 10.1002/macp.202000185
  • Sun J, Wu ST. Recent advances in polymer network liquid crystal spatial light modulators. J Polym Sci Part B. 2014;52(3):183–192. doi: 10.1002/polb.23391
  • Cui Y, Ke Y, Chang L, et al. Thermochromic VO2 for energy-efficient smart windows. Joule. 2018;2:1707–1746. doi: 10.1016/j.joule.2018.06.018
  • Ahmad F, Jamil M, Lee J, et al. Surfactant-doped reverse-mode polymer-dispersed liquid crystal display with enhanced properties. Liq Cryst. 2015;43:162–167. doi: 10.1080/02678292.2015.1090026
  • Khandelwal H, Heeswijk E, Schenning A, et al. Paintable temperature-responsive cholesteric liquid crystal reflectors encapsulated on a single flexible polymer substrate. J Mater Chem C. 2019;7(24):7395–7398. doi: 10.1039/C9TC02011J
  • Jiang B, Liu L, Gao Z, et al. A general and robust strategy for fabricating mechanoresponsive surface wrinkles with dynamic switchable transmittance. Adv Opt Mater. 2018;6(13):1800195. doi: 10.1002/adom.201800195
  • Yu B, Ji S, Kim J, et al. Fabrication of a dye-doped liquid crystal light shutter by thermal curing of polymer. Opt Mater. 2017;69:164–168. doi: 10.1016/j.optmat.2017.04.029
  • Binet C, Mitov M, Mauzac M. Switchable broadband light reflection in polymer-stabilized cholesteric liquid crystals. J Appl Phys. 2001;90(4):1730–1734. doi: 10.1063/1.1388172
  • Chen G, Hu J, Xu J, et al. Liquid crystalline composite stabilized by epoxy polymer with boscage-like morphology for energy-efficient smart windows with high stability. Macromol Mater Eng. 2022;307(8):2100991. doi: 10.1002/mame.202100991
  • Ridhima G, Vandna S, Ankit Rai D, et al. Performance augmentation of bistable cholesteric liquid crystal light shutter- effect of dichroic dye on morphological and electro-optical characteristics. Opt Mater. 2022;127:112243. doi: 10.1016/j.optmat.2022.112243
  • Hou D, Zheng L, Sun D, et al. Polymer-stabilized blue phase liquid crystal sensor for sensitive and selective detection of organic vapors. Liq Cryst. 2021;48:201–208. doi: 10.1080/02678292.2021.1951381
  • Zhang D, Cao H, Duan M, et al. Effect of monomer composition on the performance of polymer-stabilized liquid crystals with two-step photopolymerization. J Polym Sci Part B. 2019;57(17):1126–1132. doi: 10.1002/polb.24867
  • Fung Y, Yang D, Ying S, et al. Polymer networks formed in liquid crystals. Liq Cryst. 1995;19(6):797–801. doi: 10.1080/02678299508031102
  • Hu X, Zhang X, Yang W, et al. Stable and scalable smart window based on polymer stabilized liquid crystals. J Appl Polym Sci. 2020;137(30):48917. doi: 10.1002/app.48917
  • Furue F, Hasegawa A, Shukuoka M, et al. Control of characteristics in polymer-stabilized ferroelectric liquid crystals by using binary mixture system of monomers. J Photopolym Sci Technol. 2015;28:325–328. doi: 10.2494/photopolymer.28.325
  • Lee K, Tondglia V, Godman N, et al. Blue-shifting tuning of the selective reflection of polymer stabilized cholesteric liquid crystals. Soft Matter. 2017;13:5842–5848. doi: 10.1039/C7SM01190C
  • Hsu C, Gu Z, Wu C, et al. Morphology, electro-optical and dielectric properties of polymer network liquid crystals in visible wavelengths. Liq Cryst. 2019;46(4):560–569. doi: 10.1080/02678292.2018.1512667
  • Jeon B, Choi T, Do S, et al. Effects of curing temperature on switching between transparent and translucent states in a polymer-stabilized liquid-crystal cell. IEEE Trans. Electron Devices 2018;65(10):4387–4393. doi: 10.1109/TED.2018.2864161
  • Zhang M, Li X, Long Z, et al. Effect of different monomers on the electro-optical properties of reverse-mode polymer stabilized liquid crystal. J Mol Liq. 2022;363:119895. doi: 10.1016/j.molliq.2022.119895
  • Yan X, Zhou Y, Liu W, et al. Effects of silver nanoparticle doping on the electro-optical properties of polymer stabilized liquid crystal devices. Liq Cryst. 2020;47(8):1131–1138. doi: 10.1080/02678292.2019.1641754
  • Zhang Y, Wang C, Zhao W, et al. Polymer stabilized liquid crystal smart window with flexible substrates based on low-temperature treatment of polyamide acid technology. Polymers. 2019;11(11):1869. doi: 10.3390/polym11111869
  • Sun H, Xie Z, Ju C, et al. Dye-doped electrically smart windows based on polymer-stabilized liquid crystal. Polymers. 2019;11(4):694. doi: 10.3390/polym11040694
  • Zhou Y, You Y, Liao X, et al. Effect of polymer network topology on the electro‐optical performance of polymer stabilized liquid crystal (PSLC) devices. Macromol Chem Phys. 2020;221(18):2000185. doi: 10.1002/macp.202000185
  • He Z, Zeng J, Zhu S, et al. A bistable light shutter based on polymer stabilized cholesteric liquid crystals. Opt Mater. 2023;136:113426. doi: 10.1016/j.optmat.2022.113426
  • Li H, Xu J, Ren Y, et al. Preparation of highly durable reverse-mode polymer-stabilized liquid crystal films with polymer walls. ACS Appl Mater Interfaces. 2023;15:2228–2236. doi: 10.1021/acsami.2c19197
  • Yin S, Ge S, Li X, et al. Recyclable cholesteric phase liquid crystal device for detecting storage temperature failure. ACS Appl Mater Interfaces. 2023;15(29):35302–35310. doi: 10.1021/acsami.3c07287
  • Zhao R, Li X, Wang K, et al. Effect of the introduction of mono-functional monomer on the electro-optic properties of reverse-mode polymer stabilised cholesteric liquid crystal. Liq Cryst. 2020;48:1162–1174. doi: 10.1080/02678292.2020.1849835

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.