197
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Short chiral pitch and blue phase stability in cholesteric liquid crystal mixtures by adding achiral benzoic acid derivative

ORCID Icon, , , , , & show all
Pages 10-19 | Received 28 Jul 2023, Accepted 04 Oct 2023, Published online: 23 Oct 2023

References

  • Walker R, Pociecha D, Abberley JP, et al. Spontaneous chirality through mixing achiral components: a twist-bend nematic phase driven by hydrogen-bonding between unlike components. Chem Commun. 2018;54:3383–3386. doi: 10.1039/C8CC00525G
  • Walker R, Pociecha D, Salamończyk M, et al. Supramolecular liquid crystals exhibiting a chiral twist-bend nematic phase. Mater Adv. 2020;1(6):1622–1630. doi: 10.1039/D0MA00302F
  • Tournilhac, F. Cosmetic composition structured by a thermotropic liquid crystal polymer. United States patent US 7,153,517. 2006 Dec 26.
  • Oh H, Kikuchi H, Lee JH, et al. Ultraviolet light screen using cholesteric liquid crystal capsules on the basis of selective reflection. RSC Adv. 2021;11(41):25471–25476. doi: 10.1039/D1RA03499E
  • de Gennes PG, Prost J. The physics of liquid crystals. Oxford: Clarendon Press; 1993.
  • Kitzerow H-S, Bahr C, editors. Chirality in liquid crystals. New York: Springer-Verlag; 2001.
  • Higashiguchi K, Yasui K, Kikuchi H. Direct observation of polymer-stabilized blue phase I structure with confocal laser scanning microscope. J Am Chem Soc. 2008;130(20):6326–6327. doi: 10.1021/ja801553g
  • Dmitrienko VE. Electro-optic effects in blue phases. Liq Cryst. 1989;5(3):847–851. doi: 10.1080/02678298908026390
  • Gerber PR. Electro-optical effects of a small-pitch blue-phase system. Mol Cryst Liq Cryst. 1985;116:197–206. doi: 10.1080/00268948508074573
  • Coles HJ, Gleeson HF. Electric field induced phase transitions and colour switching in the blue phases of chiral nematic liquid crystals. Mol Cryst Liq Cryst Inc Nonlinear Opt. 1989;167(1):213–225. doi: 10.1080/00268948908037178
  • Heppke G, Jerome B, Kitzerow H-S, et al. Electrostriction of the cholesteric blue phases BPI and BPII in mixtures with positive dielectric anisotropy. J Phys. 1989;50(19):2991–2998. doi: 10.1051/jphys:0198900500190299100
  • Sato M, Yoshizawa A. Electro-optical switching in a blue phase III exhibited by a chiral liquid crystal oligomer. Adv Mater. 2007;19(23):4145–4148. doi: 10.1002/adma.200700903
  • Rao L, Ge Z, Wu S-T, et al. Low voltage blue-phase liquid crystal displays. Appl Phys Lett. 2009;95(23). doi: 10.1063/1.3271771
  • Shibayama S, Higuchi H, Okumura Y, et al. Dendron-stabilized liquid crystalline blue phases with an enlarged controllable range of the photonic band for tunable photonic devices. Adv Funct Mater. 2013;23(19):2387–2396. doi: 10.1002/adfm.201202497
  • Zhu G, Wei B, Shi L, et al. A fast response variable optical attenuator based on blue phase liquid crystal. Opt Express. 2013;21(5):5332–5337. doi: 10.1364/OE.21.005332
  • Kikuchi H, Yokota M, Hisakado Y, et al. Polymer-stabilized liquid crystal blue phases. Nat Mater. 2002;1(1):64–68. doi: 10.1038/nmat712
  • Coles HJ, Pivnenko MN. Liquid crystal ‘blue phases’ with a wide temperature range. Nature. 2005;436(7053):997–1000. doi: 10.1038/nature03932
  • He W, Pan G, Yang Z, et al. Wide blue phase range in a hydrogen‐bonded self‐assembled complex of chiral fluoro‐substituted benzoic acid and pyridine derivative. Adv Mater. 2009;21(20):2050–2053. doi: 10.1002/adma.200802927
  • Yoshizawa A, Sato M, Rokunohe J. A blue phase observed for a novel chiral compound possessing molecular biaxiality. J Mater Chem. 2005;15(32):3285–3290. doi: 10.1039/b506167a
  • Karatairi E, Rožič B, Kutnjak Z, et al. Nanoparticle-induced widening of the temperature range of liquid-crystalline blue phases. Phys Rev E. 2010;81(4):041703. doi: 10.1103/PhysRevE.81.041703
  • Kim B, Um YJ, Jeon S, et al. Enlargement of blue-phase stability for rod-like low-molecular-weight chiral nematic liquid crystal mixtures. Liq Cryst. 2014;41(11):1619–1626. doi: 10.1080/02678292.2014.936531
  • Dierking I. Textures of liquid crystals. Weinheim: Wiley-VCH; 2003.
  • Abdy MJ, Murdoch A, Martínez-Felipe A. New insights into the role of hydrogen bonding on the liquid crystal behaviour of 4-alkoxybenzoic acids: a detailed IR spectroscopy study. Liq Cryst. 2016;43(13–15):2191–2207. doi: 10.1080/02678292.2016.1212119
  • Paleos CM, Tsiourvas D. Supramolecular hydrogen-bonded liquid crystals. Liq Cryst. 2001;28(8):1127–1161. doi: 10.1080/02678290110039516
  • Roohnikan M, Ebrahimi M, Ghaffarian SR, et al. Supramolecular self-assembly of a novel hydrogen-bonded cholesteric liquid crystal exhibiting macromolecular behaviour. Liq Cryst. 2013;40(3):314–320. doi: 10.1080/02678292.2012.745907
  • Wrobel TP, Mateuszuk L, Chlopicki S, et al. Imaging of lipids in atherosclerotic lesion in aorta from ApoE/LDLR-/- mice by FT-IR spectroscopy and hierarchical cluster analysis. Analyst. 2011;136:5247–5255. doi: 10.1039/c1an15311k
  • Vijayakumar VN, Mohan MLNM. Study of optical shutter in cholesteric phase of a double hydrogen-bonded ferroelectric liquid crystal with two chiral carbons. Mol Cryst Liq Cryst. 2010;528:163–177.
  • Swathi P, Sastry SS, Kumar PA, et al. Induced smectic-G phase through intermolecular H-Bonding: part III. Influence of alkyl chain length of p-n -alkoxybenzoic acids on thermal and phase behaviour. Mol Cryst Liq Cryst Sci Technol Sect Mol Cryst Liq Cryst. 2001;365:523–533. doi: 10.1080/10587250108025332
  • Smith BC. The C=O bond, part III: carboxylic acids. Spectroscopy. 2018;33:14–20.
  • Odinokov SE, Iogansen AV. Torsional γ (OH) vibrations, fermi resonance [2γ (OH)⇐ ν (OH)] and isotopic effects in i.r. spectra of H-complexes of carboxylic acids with strong bases. Spectrochim Acta Part Mol Spectrosc. 1972;28:2343–2350.
  • Martinez-Felipe A, Cook AG, Abberley JP, et al. An FT-IR spectroscopic study of the role of hydrogen bonding in the formation of liquid crystallinity for mixtures containing bipyridines and 4-pentoxybenzoic acid. RSC Adv. 2016;6(110):108164–108179. doi: 10.1039/C6RA17819G
  • Borschel EM, Buback M. Dimerization of carboxylic acids in solution up to high pressures and temperatures. 1. Pivalic acid. Z Naturforschung Teil A. 1987;42:187–196. doi: 10.1515/zna-1987-0212
  • Paterson DA, Martínez-Felipe A, Jansze SM, et al. New insights into the liquid crystal behaviour of hydrogen-bonded mixtures provided by temperature-dependent FTIR spectroscopy. Liq Cryst. 2015;1–12.
  • Varfolomeev MA, Abaidullina DI, Gainutdinova AZ, et al. FTIR study of H-bonds cooperativity in complexes of 1, 2-dihydroxybenzene with proton acceptors in aprotic solvents: influence of the intramolecular hydrogen bond. Spectrochim Acta A Mol Biomol Spectrosc. 2010;77:965–972. doi: 10.1016/j.saa.2010.08.032
  • Thisayukta J, Niwano H, Takezoe H, et al. Enhancement of twisting power in the chiral nematic phase by introducing achiral banana-shaped molecules. J Am Chem Soc. 2002;124(13):3354–3358. doi: 10.1021/ja0123249
  • Hertz J, Tyrcha J, Correales A. Stochastic activation in a genetic switch model. Phys Rev E. 2018;98(5):052403. doi: 10.1103/PhysRevE.98.052403
  • Jeong K-U, Yang D-K, Graham MJ, et al. Construction of chiral propeller architectures from achiral molecules. Adv Mater. 2006;18(24):3229–3232. doi: 10.1002/adma.200601338
  • Leder LB. Rotatory sense and pitch of cholesteric liquid crystals. J Chem Phys. 1971;55(6):2649–2657. doi: 10.1063/1.1676475
  • Masubuchi S, Akahane T, Nakao K, et al. Temperature and composition dependence of the pitch of cholesteryl chloride-cholesteryl nonanoate mixtures. Mol Cryst Liq Cryst. 1977;38(1):265–274. doi: 10.1080/15421407708084392
  • Baessler H, Labes MM. Helical twisting power of steroidal solutes in cholesteric mesophases. J Chem Phys. 1970;52(2):631–637. doi: 10.1063/1.1673034
  • Dubois-Violette E, Pansu B. Frustration and related topology of blue phases. Mol Cryst Liq Cryst Inc Nonlinear Opt. 1988;165(1):151–182. doi: 10.1080/00268948808082200
  • Kitzerow H-S, Bahr C, editors. Chirality in liquid crystals. 2001.
  • Yoshida H, Tanaka Y, Kawamoto K, et al. Nanoparticle-stabilized cholesteric blue phases. Appl Phys Express. 2009;2(12):121501. doi: 10.1143/APEX.2.121501
  • Lee J, Kim A, Hong S-K, et al. Selective stabilisation of blue phase liquid crystal induced by distinctive geometric structure of additives. Liq Cryst. 2018;45(2):230–237. doi: 10.1080/02678292.2017.1309700

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.