73
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Magnetorheological liquid-crystalline polymers with magnetic tetrachloroferrate ions based on polyvinyl chloride

, , , , , , & show all
Pages 386-400 | Received 14 Jul 2023, Accepted 21 Dec 2023, Published online: 04 Jan 2024

References

  • Mertelj A, Lisjak D. Ferromagnetic nematic liquid crystals. Liq Cryst Rev. 2017;5(1):1–33. doi: 10.1080/21680396.2017.1304835
  • Solodkov NV, Shim JU, Jones JC. Self-assembly of fractal liquid crystal colloids. Nat Commun. 2019;10(1):198. doi: 10.1038/s41467-018-08210-w
  • Gao S, Fleisch M, Rupp RA, et al. Magnetically tunable optical diffraction gratings based on a ferromagnetic liquid crystal. Opt Express. 2019;27(6):8900–8911. doi: 10.1364/OE.27.008900
  • Sebastian N, Osterman N, Lisjak D, et al. Director reorientation dynamics of ferromagnetic nematic liquid crystals. Soft Matter. 2018;14(35):7180–7189. doi: 10.1039/C8SM01377B
  • Goossens K, Lava K, Bielawski CW, et al. Ionic liquid crystals: versatile materials. Chem Rev. 2016;116(8):4643–4807. doi: 10.1021/cr400334b
  • Feng C, Rajapaksha CPH, Cedillo JM, et al. Electroresponsive ionic liquid crystal elastomers. Macromol Rapid Commun. 2019;1900299: doi: 10.1002/marc.201900299
  • Kato T, Yoshio M, Ichikawa T, et al. Transport of ions and electrons in nanostructured liquid crystals. Nat Rev Mater. 2017;2(4):17001. doi: 10.1038/natrevmats.2017.1
  • Lv K, Zhang W, Zhang L, et al. POSS-based electrolyte for efficient solid-state dye-sensitized solar cells at sub-zero temperatures. ACS Appl Mater Interfaces. 2016;8(8):5343–5350. doi: 10.1021/acsami.5b12353
  • Yazaki S, Funahashi M, Kato T. An electrochromic nanostructured liquid crystal consisting of π-conjugated and ionic moieties. J Am Chem Soc. 2008;130:1320613207. doi: 10.1021/ja805339q
  • Liu FP, Li AR, Wang J, et al. Iron-based ionic liquid ([BMIM][FeCl4]) as a promoter of CO2 hydrate nucleation and growth. Energy. 2021;214:119034. doi: 10.1016/j.energy.2020.119034
  • Wang X, Valldor M, Spielberg ET, et al. Paramagnetic iron-containing ionic liquid crystals. J Mol Liq. 2020;304:112583. doi: 10.1016/j.molliq.2020.112583
  • Pei Y, Cao Y, Huang Y, et al. Tunable LCST-type phase behavior of [FeCl4]–based ionic liquids in water. Sci China Chem. 2016;59:587–593. doi: 10.1007/s11426-016-5577-0
  • Garcia-Saiz A, Migowski P, Vallcorba O, et al. A magnetic ionic liquid based on tetrachloroferrate exhibits three-dimensional magnetic ordering: a combined experimental and theoretical study of the magnetic interaction mechanism. Chem Eur J. 2014;20(1):72–76. doi: 10.1002/chem.201303602
  • Ubaidillah SJ, Purwanto A, Mazlan SA. et al. Recent progress on magnetorheological solids: materials, fabrication, testing, and applications. Adv Engin Mater. 2015;17:563–597. doi: 10.1002/adem.201400258
  • Mrlik M, Ilcikova M, Pavlinek V, et al. Improved thermooxidation and sedimentation stability of covalently-coated carbonyl iron particles with cholesteryl groups and their influence on magnetorheology. J Colloid Interface Sci. 2013;396:146–151. doi: 10.1016/j.jcis.2013.01.027
  • Park J, Fang FF, Choi HJ. Magnetorheology: materials and application. Soft Matt. 2010;6(21):5246–5253. doi: 10.1039/c0sm00014k
  • Bica I, Liu YD, Choi HJ. Physical characteristics of magnetorheological suspen-sions and their applications. J Ind Eng Chem. 2013;19:394–406. doi: 10.1016/j.jiec.2012.10.008
  • Eem SH, Jung HJ, Koo JH. Application of MR elastomers for improving seismic protection of base-isolated structures. IEEE Trans Magn. 2011;47(10):2901–2904. doi: 10.1109/TMAG.2011.2156771
  • Yang Y, Xu ZD, Xu YW, et al. Analysis on influence of the magnetorheological fluid microstructure on the mechanical properties of magnetorheological dampers. Smart Mater Struct. 2020;29(11):115025. doi: 10.1088/1361-665X/abadd2
  • Saini RST, Chandramohan S, Sujatha S, et al. Design of bypass rotary vane magnetorheological damper for prosthetic knee application. J Intelligent Mater System Struct. 2020;32:931–942. doi: 10.1177/1045389X20942577
  • Desai RM, Acharya S, Jamadar MH, et al. Synthesis of magnetorheological fluid and its application in a twin-tube valve mode automotive damper. J Mater Design Appl. 2020;234:1001–1016. doi: 10.1177/1464420720925497
  • Ashtiani M, Hashemabadi SH, Ghaffari A. A review on the magnetorheological fluid preparation and stabilization. J Magn Magn Mater. 2015;374:716–730. doi: 10.1016/j.jmmm.2014.09.020
  • Wang L, Song Q, Mi Z, et al. Improving transient magnetorheological response of magnetorheological elastomer by incorporating cIP@FeNi particles. Smart Mater Struct. 2021;30:024002. doi: 10.1088/1361-665X/abcf1c
  • Fan X, Wang Y, Wang B, et al. Nonlinear magneto-electro-mechanical response of physical cross-linked magneto-electric polymer gel. Front Mater. 2021;8:665814. doi: 10.3389/fmats.2021.665814
  • Tong Y, Li X, Zhao P, et al. Improved magnetorheological properties by using ionic liquid as carrier liquid of magnetorheological fluids. Front Mater. 2021;8:659998. doi: 10.3389/fmats.2021.659998
  • Fang FF, Choi HJ, Seo Y. Sequential coating of magnetic carbonyliron particles with polystyrene and multiwalled carbon nanotubes and its effect on their magnetorheology. ACS Appl Mater Inter. 2010;2(1):54. doi: 10.1021/am900577w
  • Aziz1 SAA, Mazlan SA, Ismail NIN, et al. Effects of multiwall carbon nanotubes on viscoelastic properties of magnetorheological elastomers. Smart Mater Struct. 2016;25(7):077001. doi: 10.1088/0964-1726/25/7/077001
  • Jiang W, Zhu W, Chang Y, et al. Ionic liquid extraction and catalytic oxidative desulfurization of fuels using dialkylpiperidinium tetrachloroferrates catalysts. Chem Eng J. 2014;250:48–54. doi: 10.1016/j.cej.2014.03.074
  • Kogelnig D, Stojanovic A, Kammer F, et al. Tetrachloroferrate containing ionic liquids: magnetic- and aggregation behavior. Inorg Chem Commun. 2010;13(12):1485–1488. doi: 10.1016/j.inoche.2010.08.023
  • Pei X, Yan YH, Yan L, et al. A magnetically responsive material of single-walled carbon nanotubes functionalized with magnetic ionic liquid. Carbon. 2010;48(9):2501–2505. doi: 10.1016/j.carbon.2010.03.023
  • Hayashi S, Saha S, Hamaguchi H. A new class of magnetic fluids: bmim[FeCl4] and nbmim[FeCl4] ionic liquids. IEEE Trans Magn. 2006;42:12–14. doi: 10.1109/TMAG.2005.854875
  • Koltzenbury S, Wolff D, Springer J. Novel study on the liquid crystalline behavior of poly (methacrylate) with biphenyl side groups. J Polym Sci Part A. 1998;36:2669–2679. doi: 10.1002/(SICI)1099-0518(19981115)36:15<2669:AID-POLA1>3.0.CO;2-4
  • Bhowmik PK, Killarney ST, Koh JJ, et al. Thermotropic liquid–crystalline properties of 4,4’-dialkoxy-3,3’-diaminobiphenyl compounds and their precursors. Liq Cryst. 2016;43:1560–1577. doi: 10.1080/02678292.2016.1187770
  • Kaur S, Mohiuddin G, Satapathy P, et al. Influence of terminal halogen moieties on the phase structure of short-core achiral hockey-stick shaped mesogens: design, synthesis and structure-property relationship. Mol Syst Des Eng. 2018;3:839–852. doi: 10.1039/C8ME00027A
  • Yao W, Gao Y, Yuan X, et al. Synthesis and self-assembly behaviours of side-chain smectic thiol–ene polymers based on the polysiloxane backbone. J Mater Chem C. 2016;4(7):1425–1440. doi: 10.1039/C5TC04331J
  • Wang Z, Wu Y, Luo P, et al. Poly (sodium p-styrene sulfonate) modified Fe3O4 nanoparticles as effective additives in water-based drilling fluids. J Petroleum Sci Engin. 2018;165:786–797. doi: 10.1016/j.petrol.2018.03.001
  • Shi G, Wang W, Wang G, et al. Dynamic mechanical properties of FeSi alloy particles-filled magnetorheological elastomers. Polym Plastics Technol Mater. 2019;58:1625–1637. doi: 10.1080/25740881.2018.1563136
  • Saha A, Payra S, Dutta D, et al. Acid-functionalised magnetic ionic liquid [acmim]fecl4 as catalyst for oxidative hydroxylation of arylboronic acids and regioselective friedel-crafts acylation. Chempluschem. 2017;82:1129–1134. doi: 10.1002/cplu.201700221
  • Hayashi S, Hamaguchi HO. Discovery of a magnetic ionic liquid [bmim]FeCl4. Chem Lett. 2004;33(12):1590–1591. doi: 10.1246/cl.2004.1590
  • Zhang WL, Tian J, Zeng H, et al. Promoted electro-responsive performances in an interface-confined oxidized niobium carbide MXene. Chem Eng J. 2019;366:321–329. doi: 10.1016/j.cej.2019.02.065
  • Prekas K, Shah T, Soin N, et al. Sedimentation behaviour in electrorheological fluids based on suspensions of zeolite particles in silicone oil. J Colloid Interf Sci. 2013;401:58–64. doi: 10.1016/j.jcis.2013.03.040
  • Zhang H, Zou Z, An N, et al. In-situ capacitance sensing for the settlement of magnetorheological fluid: simulation and experiments. Front Mater. 2021;8:82. doi: 10.3389/fmats.2021.663925
  • Kolekar S. Preparation of magnetorheological fluid and study on its rheological properties. Inter J Nanosci. 2014;13:1450009. doi: 10.1142/S0219581X14500094

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.