99
Views
1
CrossRef citations to date
0
Altmetric
Research Article

A cinnamate liquid crystal for rapid optical recording

, , , , &
Pages 432-441 | Received 20 Nov 2023, Accepted 03 Jan 2024, Published online: 09 Jan 2024

References

  • Zhuang Y, Ren X, Che X, et al. Organic photoresponsive materials for information storage: a review. Adv Photon. 2020;3(1):014001. doi: 10.1117/1.AP.3.1.014001
  • Malallah R, Li H, Kelly DP, et al. A review of hologram storage and self-written waveguides formation in photopolymer media. Polymers. 2017;9(8):337. doi: 10.3390/polym9080337
  • Ru Y, Shi Z, Zhang J, et al. Recent progress of photochromic materials towards photocontrollable devices. Mater Chem Front. 2021;5(21):7737–7758. doi: 10.1039/D1QM00790D
  • Qi Y, Fan J, Chang Y, et al. Smart photochromic fabric prepared via thiol-ene click chemistry for image information storage applications. Dyes Pigm. 2021;193:109507. doi: 10.1016/j.dyepig.2021.109507
  • Huang Y, Bisoyi HK, Huang S, et al. Bioinspired synergistic photochromic luminescence and programmable liquid crystal actuators. Angew Chem Int Ed. 2021;60(20):11247–11251. doi: 10.1002/anie.202101881
  • Kang H, Joo K, Kang Y, et al. Highly sensitive updatable green hologram recording polymer with photoisomerizable azobenzene with highly birefringent acetylene as the side chain. Polym J. 2021;53(4):539–547. doi: 10.1038/s41428-020-00447-x
  • Bisoyi HK, Li Q. Light-driven liquid crystalline materials: from photo-induced phase transitions and property modulations to applications. Chem Rev. 2016;116(24):15089–15166. doi: 10.1021/acs.chemrev.6b00415
  • Kryshenik VM, Azhniuk YM, Kovtunenko VS. All-optical patterning in azobenzene polymers and amorphous chalcogenides. J Non Cryst Solids. 2019;512:112–131. doi: 10.1016/j.jnoncrysol.2019.02.019
  • Zhang L, Wang H, Li S, et al. Supramolecular chiroptical switches. Chem Soc Rev. 2020;49(24):9095–9120. doi: 10.1039/D0CS00191K
  • Zhang J, Zou Q, Tian H. Photochromic materials: more than meets the eye. Adv Mater. 2013;25(3):378–399. doi: 10.1002/adma.201201521
  • Chen S, Chen Y, Tong X, et al. Room temperature optical image storage devices based on novel photo-responsive chiral azobenzene liquid crystal dopants. Mater Res Express. 2016;3(11):115701. doi: 10.1088/2053-1591/3/11/115701
  • Liang X, Hu H, Zheng Z, et al. Quadri-dimensional anti-counterfeiting flexible label programmed by a photoresponsive liquid crystal polymer film. Ind Eng Chem Res. 2023;62(26):9961–9969. doi: 10.1021/acs.iecr.3c01014
  • Lu J, Gu W, Wei J, et al. Novel planar chiral dopants with high helical twisting power and structure-dependent functions. J Mater Chem C. 2016;4(40):9576–9580. doi: 10.1039/C6TC02557A
  • Li Q, Green L, Venkataraman N, et al. Reversible photoswitchable axially chiral dopants with high helical twisting power. J Am Chem Soc. 2007;129(43):12908–12909. doi: 10.1021/ja0747573
  • Zheng J, He Z, Li C, et al. Multi-field driven thermochromic films and preparation of multi-color patterns. Liq Cryst. 2022;49(13):1853–1865. doi: 10.1080/02678292.2022.2072010
  • Ni B, Cao Y, Li H, et al. Pearl-inspired polymer films with chiral nematic and multi-lamellar structures. Liq Cryst. 2021;48(11):1505–1515. doi: 10.1080/02678292.2021.1881833
  • Xu T, Yu R, Liu W, et al. Colorful patterned organic–inorganic hybrid silica films with a cholesteric structure. J Sol Gel Sci Technol. 2022;104(1):91–96. doi: 10.1007/s10971-022-05926-6
  • Foelen Y, van Gils NJM, Claessen MDT. Multicolor photonic patterns through an intensity-controlled single photopolymerization step. Chem Commun. 2022;58(77):10833–10836. doi: 10.1039/D2CC04050F
  • Broer DJ, Lub J, Mol GN. Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient. Nature. 1995;378(6556):467–469. doi: 10.1038/378467a0
  • Mitov M. Cholesteric liquid crystals with a broad light reflection band. Adv Mater. 2012;24(47):6260–6276. doi: 10.1002/adma.201202913
  • Huang W, Zhang X, Guo J, et al. Super wide-band reflective polarisers from polymer stabilised liquid crystal films. Liq Cryst. 2009;36(5):497–501. doi: 10.1080/02678290903029753
  • Tagaya A, Ishii S, Kokoyama Y, et al. The advanced highly scattering optical transmission polymer backlight for liquid crystal displays. Jpn J Appl Phys. 2002;41(4A):2241–2248. doi: 10.1143/JJAP.41.2241
  • Bian Z, Li K, Huang W, et al. Characteristics of selective reflection of chiral nematic liquid crystalline gels with a nonuniform pitch distribution. Appl Phys Lett. 2007;91(20):201908. doi: 10.1063/1.2812539
  • Gao Y, Yao W, Sun J, et al. A novel soft matter composite material for energy-saving smart windows: from preparation to device application. J Mater Chem A. 2015;3(20):10738–10746. doi: 10.1039/C4TA06347C
  • Binet C, Mitov M, Mauzac M. Switchable broadband light reflection in polymer-stabilized cholesteric liquid crystals. J Appl Phys. 2001;90(4):1730–1734. doi: 10.1063/1.1388172
  • Zhang X, Shi W, Han R, et al. Self-diffusion method for broadband reflection in polymer-stabilized cholesteric liquid crystal films. Liq Cryst. 2022;49(4):494–503. doi: 10.1080/02678292.2021.1979114
  • Zhang L, Wang M, Wang L, et al. Polymeric infrared reflective thin films with ultra-broad bandwidth. Liq Cryst. 2016;43(6):750–757. doi: 10.1080/02678292.2016.1142013
  • Choi H, Kim J, Nishimura S, et al. Broadband cavity-mode lasing from dye-doped nematic liquid crystals sandwiched by broadband cholesteric liquid crystal bragg reflectors. Adv Mater. 2010;22(24):2680–2684. doi: 10.1002/adma.200904110
  • He W, Yao D, Luo S, et al. Broadband reflective liquid crystal films prepared by rapid inkjet printing and superposition polymerization. Crystals. 2022;12(4):473. doi: 10.3390/cryst12040473
  • Duan M, Cao H, Wu Y, et al. Broadband reflection in polymer stabilized cholesteric liquid crystal films with stepwise photo-polymerization. Phys Chem Chem Phys. 2017;19(3):2362–2367. doi: 10.1039/C6CP07066C
  • Yang H, Mishima K, Matsuyama K, et al. Thermally bandwidth-controllable reflective polarizers from (polymer network/liquid crystal/chiral dopant) composites. Appl Phys Lett. 2003;82(15):2407–2409. doi: 10.1063/1.1567809
  • Chen X, Wang L, Chen Y, et al. Broadband reflection of polymer-stabilized chiral nematic liquid crystals induced by a chiral azobenzene compound. Chem Commun. 2014;50(6):691–694. doi: 10.1039/C3CC47438K
  • Lu H, Xie X, Xing J, et al. Wavelength-tuning and band-broadening of a cholesteric liquid crystal induced by a cyclic chiral azobenzene compound. Opt Mater Express. 2016;6(10):3145–3158. doi: 10.1364/OME.6.003145
  • Chen G, Wang L, Wang Q, et al. Photoinduced hyper-reflective laminated liquid crystal film with simultaneous multicolor reflection. ACS Appl Mater Interfaces. 2014;6(3):1380–1384. doi: 10.1021/am405471e
  • Relaix S, Bourgerette C, Mitov M. Broadband reflective cholesteric liquid crystalline gels: volume distribution of reflection properties and polymer network in relation with the geometry of the cell photopolymerization. Liq Cryst. 2007;34(9):1009–1018. doi: 10.1080/02678290701602876
  • Yu P, Chen X, Gao J, et al. Polymer-stabilized cholesteric liquid crystal films with broadband reflection formed by photomask polymerization. Opt Mater. 2023;136:113385. doi: 10.1016/j.optmat.2022.113385
  • He W, Wang F, Song P, et al. Broadband reflective liquid crystal films induced by facile temperature-dependent coexistence of chiral nematic and TGB phase. Liq Cryst. 2017;44(3):582–592. doi: 10.1080/02678292.2016.1257746
  • Wang S, Fang F, Guo Y, et al. Properties and structural coloured film preparation of some chiral dopants derived from D-isosorbide. Mol Cryst Liq Cryst. 2021;722(1):36–46. doi: 10.1080/15421406.2020.1864571
  • Wang T, Zhao J, Wu L, et al. Polymer-stabilized cholesteric liquid crystal films with double reflection bands prepared based on the competition between photopolymerization and photoisomerization. ACS Appl Mater Interfaces. 2023;15(37):44314–44321. doi: 10.1021/acsami.3c09576
  • Escuti MJ, Cairns DR, Crawford GP. Optical-strain characteristics of anisotropic polymer films fabricated from a liquid crystal diacrylate. J Appl Phys. 2004;95(5):2386–2390. doi: 10.1063/1.1643192
  • Shin A, Park M, Cho JK, et al. Tuning helical twisting power of isosorbide-based chiral dopants by chemical modifications. Mol Cryst Liq Cryst. 2011;534(1):19–31. doi: 10.1080/15421406.2010.526523
  • Alberti A, Benaglia M, Macciantelli D, et al. Further EPR-spin trapping studies of the photoinitiating activity of irgacure 369. Eur Polym J. 2008;44(9):3022–3027. doi: 10.1016/j.eurpolymj.2008.06.043
  • Chien C, Liu J. Optical behaviors of cholesteric liquid-crystalline polyester composites with various chiral photochromic dopants. Langmuir. 2015;31(49):13410–13419. doi: 10.1021/acs.langmuir.5b03201
  • Bobrovsky AY, Boiko NI, Shibaev VP. New chiral-photochromic dopant with variable helical twisting power and its use in photosensitive cholesteric materials. Mol Cryst Liq Cryst. 2001;363(1):35–50. doi: 10.1080/10587250108025256
  • Yu R, Cao Y, Chen K, et al. Light intensity-selective photopolymerization and photoisomerization for creating colorful polymer-stabilized cholesteric liquid crystal patterns. ACS Appl Mater Interfaces. 2022;14(33):38228–38234. doi: 10.1021/acsami.2c10763
  • Thisayukta J, Nakayama Y, Kawauchi S, et al. Distinct formation of a chiral smectic phase in achiral banana-shaped molecules with a central core based on a 2,7-dihydroxynaphthalene unit. J Am Chem Soc. 2000;122(31):7441–7448. doi: 10.1021/ja001370q
  • Thisayukta J, Niwano H, Takezoe H, et al. Enhancement of twisting power in the chiral nematic phase by introducing achiral banana-shaped molecules. J Am Chem Soc. 2002;124(13):3354–3358. doi: 10.1021/ja0123249
  • Cao Y, Wang Y, Zhao Y, et al. Helical twisting power enhancement by adding banana-shaped molecules. Mol Cryst Liq Cryst. 2021;726(1):41–50. doi: 10.1080/15421406.2021.1935161
  • Huang W, Cao YB, Zhang XG, et al. Synthesis and helical twisting property of polymerizable chiral dopant with temperature-dependent solubility in liquid crystal. Chin Chem Lett. 2009;20(7):873–876. doi: 10.1016/j.cclet.2009.03.019
  • Ameya J, Aarti M. A review on self-initiated and photoinitiator-free system for photopolymerization. Polym Bull. 2022;79(10):8057–8091. doi: 10.1007/s00289-021-03887-4
  • Guo J, Yu L, Liu F, et al. Effect of specific rotation of chiral dopant and polymerization temperature on reflectance properties of polymer stabilized cholesteric liquid crystal cells. J Polym Sci Pol Phys. 2008;46(15):1562–1570. doi: 10.1002/polb.21492
  • Hoekstra DC, van der Lubbe BPAC, Bus T, et al. Wavelength-selective photopolymerization of hybrid acrylate-oxetane liquid crystals. Angew Chem Int Ed. 2021;60(19):10935–10941. doi: 10.1002/anie.202101322

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.