74
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Enhanced broadband reflection properties of PSCLCs films supported by electrospun nanofiber networks loaded with Cs0.33WO3 nanoparticles

, , , , , , & show all
Pages 416-431 | Received 23 Jul 2023, Accepted 03 Jan 2024, Published online: 16 Jan 2024

References

  • Tamaoki N. Cholesteric liquid crystals for color information technology. Adv Mater. 2001;13:1135–1147. doi: 10.1002/1521-4095(200108)13:15<1135:AID-ADMA1135>3.0.CO;2-S
  • Saeva FD, Wysocki JJ. Induced circular dichroism in cholesteric liquid crystals. J Am Chem Soc. 1971;93:5928–5929. doi: 10.1021/ja00751a075
  • Dreher R, Meier G, Saupe A. Selective reflection by cholesteric liquid crystals. Mol Cryst Liq Cryst. 1971;13:17–26. doi: 10.1080/15421407108083534
  • Day GW, Gaddy OL. Electric-field-induced optical rotation in cholesteric liquid crystals. Proc IEEE. 1968;56:1113–1114. doi: 10.1109/PROC.1968.6482
  • Smith CR, Sabatino DR, Praisner TJ. Temperature sensing with thermochromic liquid crystals. Exp Fluids. 2001;30:190–201. doi: 10.1007/s003480000154
  • De Filpo G, Nicoletta FP, Chidichimo G. Cholesteric emulsions for colored displays. Adv Mater. 2005;17:1150–1152. doi: 10.1002/adma.200401912
  • Relaix S, Bourgerette C, Mitov M. Broadband reflective liquid crystalline gels due to the ultraviolet light screening made by the liquid crystal. Appl Phys Lett. 2006;89:251907. doi: 10.1063/1.2416251
  • Tanaka K, Araki T, Nozaki T, et al. The effects of carbon nanofibre on the liquid crystalline behaviour and cholesteric pitch of aqueous solutions of hydroxypropyl cellulose. Liq Cryst. 2012;39:285–294. doi: 10.1080/02678292.2011.638028
  • Finkelmann H, Kim ST, Muñoz A, et al. Tunable mirrorless lasing in cholesteric liquid crystalline elastomers. Adv Mater. 2001;13:1069–1072. doi: 10.1002/1521-4095(200107)13:14<1069:AID-ADMA1069>3.0.CO;2-6
  • Steinsträsser R, Pohl L. Chemistry and applications of liquid crystals. Angew Chem Int Ed Engl. 1973;12:617–630. doi: 10.1002/anie.197306171
  • Kumar R, Raina KK. Electrically modulated fluorescence in optically active polymer stabilised cholesteric liquid crystal shutter. Liq Cryst. 2014;41:228–233. doi: 10.1080/02678292.2013.851287
  • Zhang Z, Zhang R, Xu L, et al. Visible and infrared optical modulation of PSLC smart films doped with ATO nanoparticles. Dalton Trans. 2021;50:10033–10040. doi: 10.1039/D1DT01575C
  • Binet C, Mitov M, Mauzac M. Switchable broadband light reflection in polymer-stabilized cholesteric liquid crystals. J Appl Phys. 2001;90:1730–1734. doi: 10.1063/1.1388172
  • Kwon YJ, Lee WJ, Paek SH, et al. Wide-band reflective polarizers from variable pitch cholesteric liquid crystal films. Mol Cryst Liq Cryst. 2002;377:325–328. doi: 10.1080/10587250211665
  • Mitov M. Cholesteric liquid crystals with a broad light reflection band. Adv Mater. 2012;24:6260–6276. doi: 10.1002/adma.201202913
  • Mitov M, Dessaud N. Going beyond the reflectance limit of cholesteric liquid crystals. Nat Mater. 2006;5:361–364. doi: 10.1038/nmat1619
  • Mitov M, Nouvet E, Dessaud N. Polymer-stabilized cholesteric liquid crystals as switchable photonic broad bandgaps. Adv Mater. 2004;15:413–419. doi: 10.1140/EPJE/I2004-10058-4
  • Gauza S, Wen C-H, Wu S-T, et al. Super high birefringence isothiocyanato biphenyl-bistolane liquid crystals. Jpn J Appl Phys. 2004;43:7634–7638. doi: 10.1143/JJAP.43.7634
  • Gauza S, Wang H, Wen C-H, et al. High birefringence isothiocyanato tolane liquid crystals. Jpn J Appl Phys. 2003;42:3463–3466. doi: 10.1143/JJAP.42.3463
  • Binet C, Mitov M, Mauzac M. Switchable broadband light reflection in polymer-stabilized cholesteric liquid crystals. Appl Phys. 2001;90:1730–1734. doi: 10.1063/1.1388172
  • Fan B, Vartak S, Li L, et al. Swelling behavior of cross-linked cholesteric liquid crystal film in anisotropic solvent. Jpn J Appl Phys. 2007;46:7416–7417. doi: 10.1143/JJAP.46.7416
  • Boudet A, Mitov M, Bourgerette C, et al. Glassy cholesteric structure: thickness variation induced by electron radiation in transmission electron microscopy investigated by atomic force microscopy. Ultramicroscopy. 2001;88:219–229. doi: 10.1016/S0304-3991(01)00087-0
  • Zhang L, He W, Yuan X, et al. Broadband reflection characteristic of polymer-stabilised cholesteric liquid crystal with pitch gradient induced by a hydrogen bond. Liq Cryst. 2010;37:1275–1280. doi: 10.1080/02678292.2010.501910
  • Bian Z, Li K, Huang W, et al. Characteristics of selective reflection of chiral nematic liquid crystalline gels with a nonuniform pitch distribution. Appl Phys Lett. 2007;91:201908. doi: 10.1063/1.2812539
  • Gansel JK, Thiel M, Rill MS, et al. Gold Helix photonic metamaterial as broadband circular polarizer. Science. 2009;325:1513–1515. doi: 10.1126/science.1177031
  • Castro-Garay P, Reyes JA, Corella-Madueño A. Twist defect in an imprinted cholesteric elastomer. Appl Phys Lett. 2009;94:163504. doi: 10.1063/1.3120549
  • Castro-Garay P, Adrian Reyes J, Ramos-Garcia R. Band structure controlled by chiral imprinting. Appl Phys Lett. 2007;91:113519. doi: 10.1063/1.2784174
  • Zhang H, Liu J, Zhao X, et al. Electrically induced coloration of polymer-stabilized cholesteric liquid crystal films with broadband reflection capability for smart windows. Dyes Pigments. 2022;203:110316. doi: 10.1016/j.dyepig.2022.110316
  • Yu P, Chen X, Gao J, et al. Polymer-stabilized cholesteric liquid crystal films with broadband reflection formed by photomask polymerization. Opt Mater. 2023;136:113385. doi: 10.1016/j.optmat.2022.113385
  • Zhao Y, Li C, Lang T, et al. Broadband reflection in polymer-stabilized cholesteric liquid crystals via spin-coating MoO2 nanoparticles. New J Chem. 2022;46:23361–23368. doi: 10.1039/D2NJ05001C
  • Hu W, Chen M, Wang Q, et al. Broadband reflection in polymer‐stabilized cholesteric liquid crystals via thiol–acrylate chemistry. Angew Chem Int Ed. 2019;58:6698–6702. doi: 10.1002/anie.201902681
  • He Z, Yu P, Zhang H, et al. Silicon nanostructure-doped polymer/nematic liquid crystal composites for low voltage-driven smart windows. Nanotechnology. 2022;33:85205. doi: 10.1088/1361-6528/ac3a3b
  • Ayeb H, Alaya S, Derbali M, et al. Dielectrical, electro-optical and textural studies of 5CB nematic liquid crystal doped with TiO2 and Cu-TiO2 nanoparticle. Liq Cryst. 2021;48:223–232. doi: 10.1080/02678292.2020.1771784
  • Wang X, Cao H, Zhang L, et al. Graphene oxide modified with mesogenic groups and its effect in broad-band reflectors. ChemPluschem. 2015;80:673–678. doi: 10.1002/cplu.201402315
  • Bukowczan A, Hebda E, Pielichowski K. The influence of nanoparticles on phase formation and stability of liquid crystals and liquid crystalline polymers. J Mol Liq. 2021;321:114849. doi: 10.1016/j.molliq.2020.114849
  • Jia M, Miao Z, Wang D. Principles of preparing broad-wave reflective films supported by nanofiber networks. Liq Cryst. 2022;49:1448–1458. doi: 10.1080/02678292.2022.2041744
  • Yao Y, Zhang L, Chen Z, et al. Synthesis of CsxWO3 nanoparticles and their NIR shielding properties. Ceram Int. 2018;44(12):13469–13475. doi: 10.1016/j.ceramint.2018.04.158
  • Eyassu T, Hsaio T-J, Lin C-T. Facile solvothermal synthesis of NIR absorbing CsxWO3 nanorods by benzyl alcohol route. Mater Res Express. 2015;2:15016. doi: 10.1088/2053-1591/2/1/015016
  • Guo C, Yin S, Huang Y, et al. Supercritical solvothermal synthesis and near-infrared absorbing properties of CsxWO3. Funct Mater Lett. 2012;5:1260001. doi: 10.1142/S1793604712600016
  • Guillard H, Sixou P, Reboul L, et al. Electrooptical characterizations of polymer stabilized cholesteric liquid crystals. Polymer. 2001;42:9753–9762. doi: 10.1016/S0032-3861(01)00312-3
  • Guillard H, Sixou P. Active broadband polymer stabilized liquid crystals. Liq Cryst. 2001;28:933–944. doi: 10.1080/02678290010028753

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.