144
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Influence of the hemisphere on Janus structures containing cyanobiphenyl units

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 493-502 | Received 29 Jul 2023, Accepted 04 Jan 2024, Published online: 16 Jan 2024

References

  • Caminade AM, Zibarov A, Diaz EC, et al. Fluorescent phosphorus dendrimers excited by two photons: synthesis, two-photon absorption properties and biological uses. Beilstein J Org Chem. 2019;15:2287–2303. doi: 10.3762/bjoc.15.221
  • Sun XY, Jia P, Zhe TT, et al. Construction and multifunctionalization of chitosan-based three-phase nano-delivery system. Food Hydrocoll. 2019;96:402–411. doi: 10.1016/j.foodhyd.2019.05.040
  • Lu W, Lieber CM. Nanoelectronics from the bottom up. Nat Mater. 2007;6(11):841–850. doi: 10.1038/nmat2028
  • Sergeyev S, Pisula W, Geerts YH. Discotic liquid crystals: a new generation of organic semiconductors. Chem Soc Rev. 2007;36(12):1902–1929. doi: 10.1039/b417320c
  • Schmidt-Mende L, Fechtenkotter A, Mullen K, et al. Self-organized discotic liquid crystals for high-efficiency organic photovoltaics. Science. 2001;293(5532):1119–1122. doi: 10.1126/science.293.5532.1119
  • Liu YA, Hao M, Chen ZJ, et al. Recent advances in the development of nanofiber-based aerogel for oil-water separation: a review. Fuel. 2023;354:129338. doi: 10.1016/j.fuel.2023.129338
  • Liu Y, Yu C, Jin H, et al. A supramolecular Janus hyperbranched polymer and its photoresponsive self-assembly of vesicles with narrow size distribution. J Am Chem Soc. 2013;135(12):4765–4770. doi: 10.1021/ja3122608
  • Jurado-Sánchez B, Sattayasamitsathit S, Gao W, et al. Self-propelled activated carbon Janus micromotors for efficient water purification. Small. 2015;11(4):499–506. doi: 10.1002/smll.201402215
  • Peterca M, Percec V, Leowanawat P, et al. Predicting the size and properties of dendrimersomes from the lamellar structure of their amphiphilic Janus dendrimers. J Am Chem Soc. 2011;133(50):20507–20520. doi: 10.1021/ja208762u
  • Sikwal DR, Kalhapure RS, Govender T. An emerging class of amphiphilic dendrimers for pharmaceutical and biomedical applications: Janus amphiphilic dendrimers. Eur J Pharm Sci. 2017;97:113–134. doi: 10.1016/j.ejps.2016.11.013
  • Goodby JW. Nano-objects-sculpting and shape in molecular material design (the Pierre Gilles de Gennes ILCS prize lecture). Liq Cryst. 2019;46(13–14):1901–1924. doi: 10.1080/02678292.2019.1643508
  • Gimeno N, Vergara J, Cano M, et al. Janus-type dendromesogens: a tool to control the nanosegregation and polar organization of bent-core structures. Chem Mater. 2013;25(3):286–296. doi: 10.1021/cm302144f
  • Saez IM, Goodby JW. “Janus” supermolecular liquid crystals - giant molecules with hemispherical architectures. Chem Eur J. 2003;9(20):4869–4877. doi: 10.1002/chem.200305100
  • Saez IM, Goodby JW. Design and properties of “Janus-like” supermolecular liquid crystals. Chem Commun. 2003;2003(14):1726–1727. doi: 10.1039/B305152H
  • Rowe KE, Bruce DW. The synthesis and mesomorphism of di-, tetra- and hexa-catenar liquid crystals based on 2,2 ′-bipyridine. J Mater Chem. 1998;8(2):331–341. doi: 10.1039/a706400d
  • Lin K-T, Kuo H-M, Sheu H-S, et al. Columnar catenar bisoxazoles and bisthiazoles. Tetrahedron. 2014;70(37):6457–6466. doi: 10.1016/j.tet.2014.07.021
  • Lei ZY, Kuo HM, Lai CK. Mesogenic heterocyclic pyrazoles, isoxazoles and 1,3,4-oxadiazoles. Tetrahedron. 2017;73(12):1650–1660. doi: 10.1016/j.tet.2017.02.011
  • Gharbia M, Gharbi A, Nguyen HT, et al. Polycatenar liquid crystals with long rigid aromatic cores: a review of recent works. Curr Opin Coll Interface Sci. 2002;7(5–6):312–325. doi: 10.1016/S1359-0294(02)00087-0
  • Elgueta EY, Parra ML, Diaz EW, et al. Synthesis of novel symmetrical tetra- and hexacatenar di-amides containing 1,3,4-thiadiazole units and a study of their mesomorphic and luminescence properties. Liq Cryst. 2014;41(6):861–871. doi: 10.1080/02678292.2014.883446
  • Barbera J, Diaz EW, Dahrouch MR, et al. Synthesis of new benzobisthiazole materials and a study of their mesomorphic and luminescence properties. Supramol Chem. 2014;26(5–6):373–382. doi: 10.1080/10610278.2013.844809
  • Lu ZB, Henderson PA, Paterson BJA, et al. Liquid crystal dimers and the twist-bend nematic phase. The preparation and characterisation of the α,ω-bis(4-cyanobiphenyl-4′-yl) alkanedioates. Liq Cryst. 2014;41(3):471–483. doi: 10.1080/02678292.2014.888803
  • Fujimura S, Yamamura Y, Hishida M, et al. Reentrant nematic phase in 4-alkyl-4′-cyanobiphenyl (nCB) binary mixtures. Liq Cryst. 2014;41(7):927–932. doi: 10.1080/02678292.2014.892160
  • Dunmur DA. The magic of cyanobiphenyls: celebrity molecules. Liq Cryst. 2015;42(5–6):678–687.
  • Imrie CT, Henderson PA, Yeap GY. Liquid crystal oligomers: going beyond dimers. Liq Cryst. 2009;36(6–7):755–777. doi: 10.1080/02678290903157455
  • Haenle JC, Neidhardt MM, Beardsworth S, et al. Cyanobiphenyl versus Alkoxybiphenyl: which mesogenic unit governs the mesomorphic properties of guanidinium ionic liquid crystals? Aust J Chem. 2014;67(7):1088–1099. doi: 10.1071/CH14376
  • Vardanyan KK, Daykin A, Kilmer B. Study on cyanobiphenyl nematic doped by silver nanoparticles. Liq Cryst. 2017;44(8):1240–1252. doi: 10.1080/02678292.2016.1276223
  • Prasad S, Ojha DP. Structural, electrochemical and optical properties of 4′-n-alkyl-4-cyanobiphenyl (nCB) - a computational approach. Mol Cryst Liq Cryst. 2017;652(1):133–142. doi: 10.1080/15421406.2017.1369794
  • Gibb CJ, Storey JM, Imrie CT. A convenient one-pot synthesis, and characterisation of the ω-bromo-1-(4-cyanobiphenyl-4′-yl) alkanes (CBnBr). Liq Cryst. 2022;49(12):1706–1716. doi: 10.1080/02678292.2022.2084568
  • Imrie CT, Henderson PA. Liquid crystal dimers and higher oligomers: between monomers and polymers. Chem Soc Rev. 2007;36(12):2096–2124. doi: 10.1039/b714102e
  • Imrie CT, Walker R, Storey JMD, et al. Liquid crystal dimers and smectic phases from the intercalated to the twist-bend. Crystals. 2022;12(9):1245. doi: 10.3390/cryst12091245
  • Cavero E, Serrano JL, Giménez R, et al. Liquid crystalline dendrimers based on cinnamates and coumarins. Liq Cryst. 2016;43(10):1408–1421. doi: 10.1080/02678292.2016.1178349
  • Kim DY, Lee SA, Kim S, et al. Asymmetric fullerene nanosurfactant: interface engineering for automatic molecular alignments. Small. 2018;14(1). doi: 10.1002/smll.201702439
  • Prabhu R, Yelamaggad CV. Structure-property correlations in cyanobiphenyl-based dimer-like mesogens. J Phys Chem B. 2015;119(35):11935–11952. doi: 10.1021/acs.jpcb.5b06073
  • Bala I, Pal SK. Rod-disc oligomeric liquid crystal based on 4-cyanobiphenyl and truxene core. Liq Cryst. 2016;43(7):963–971. doi: 10.1080/02678292.2016.1153733
  • Russo V, Pieper P, Heinrich B, et al. Design, synthesis, and self-assembly behavior of liquid-crystalline bis- 60 fullerodendrimers. Chem-Eur J. 2016;22(48):17366–17376. doi: 10.1002/chem.201603408
  • Iehl J, Nguyen TLA, Frein S, et al. Designing liquid-crystalline dendronised hexa-adducts of 60 fullerene via click chemistry. Liq Cryst. 2017;44(12–13):1852–1860. doi: 10.1080/02678292.2017.1336677
  • Koh TM, Li HR, Nonomura K, et al. Photovoltage enhancement from cyanobiphenyl liquid crystals and 4-tert-butylpyridine in Co(II/III) mediated dye-sensitized solar cells. Chem Commun. 2013;49(80):9101–9103. doi: 10.1039/c3cc43892a
  • Hadjichristov GB, Marinov YG. Optical diffraction by using electrically-controlled spatially patterned nematic pentylcyanobiphenyl films under static electric field. Mol Cryst Liq Cryst. 2016;632(1):9–20.
  • Keum CM, Liu SY, Al-Shadeedi A, et al. Tuning charge carrier transport and optical birefringence in liquid-crystalline thin films: a new design space for organic light-emitting diodes. Sci Rep. 2018;8(1). doi: 10.1038/s41598-018-19157-9
  • Mercs L, Albrecht M. Beyond catalysis: N-heterocyclic carbene complexes as components for medicinal, luminescent, and functional materials applications. Chem Soc Rev. 2010;39(6):1903–1912. doi: 10.1039/b902238b
  • Cho SH, Kim JY, Kwak J, et al. Recent advances in the transition metal-catalyzed twofold oxidative C-H bond activation strategy for C-C and C-N bond formation. Chem Soc Rev. 2011;40(10):5068–5083. doi: 10.1039/c1cs15082k
  • Pace A, Pierro P. The new era of 1,2,4-oxadiazoles. Org Biomol Chem. 2009;7(21):4337–4348. doi: 10.1039/b908937c
  • Barbera J, Godoy MA, Hidalgo PI, et al. Columnar liquid crystalline benzenetrisamides with pendant 1,3,4-oxadiazole groups. Liq Cryst. 2011;38(6):679–688. doi: 10.1080/02678292.2011.568638
  • Girotto E, Bechtold IH, Gallardo H. New liquid crystals derived from thiophene connected to the 1,2,4-oxadiazole heterocycle. Liq Cryst. 2016;43(12):1768–1777. doi: 10.1080/02678292.2016.1201159
  • Concellón A, Hernández-Ainsa S, Barberá J, et al. Proton conductive ionic liquid crystalline poly(ethyleneimine) polymers functionalized with oxadiazole. RSC Adv. 2018;8(66):37700–37706. doi: 10.1039/C8RA08253G
  • Olate FA, Parra ML, Vergara JM, et al. Star-shaped molecules as functional materials based on 1,3,5-benzenetriesters with pendant 1,3,4-thiadiazole groups: liquid crystals, optical, solvatofluorochromic and electrochemical properties. Liq Cryst. 2017;44(7):1173–1184. doi: 10.1080/02678292.2016.1269369
  • Olate FA, Ulloa JA, Vergara JM, et al. Columnar liquid crystalline tris-(ether)triazines with pendant 1,3,4-thiadiazole groups: synthesis, mesomorphic, luminescence, solvatofluorochromic and electrochemical properties. Liq Cryst. 2016;43(6):811–827. doi: 10.1080/02678292.2016.1144813
  • Saha SK, Mohiuddin G, Paul MK, et al. Polar switching and cybotactic nematic ordering in 1,3,4-thiadiazole-based short-core hockey stick-shaped fluorescent liquid crystals. ACS Omega. 2019;4(4):7711–7722. doi: 10.1021/acsomega.9b00425
  • Sharma VS, Shah AP, Sharma AS. A new class of supramolecular liquid crystals derived from azo calix 4 arene functionalized 1,3,4-thiadiazole derivatives. New J Chem. 2019;43(8):3556–3564. doi: 10.1039/C8NJ04997A
  • Sharma VS, Shah AP, Sharma AS, et al. Columnar self-assembly, gelation and electrochemical behavior of cone-shaped luminescent supramolecular calix 4 arene LCs based on oxadiazole and thiadiazole derivatives. New J Chem. 2019;43(4):1910–1925. doi: 10.1039/C8NJ04922J
  • But TYS, Toy PH. The mitsunobu reaction: origin, mechanism, improvements, and applications. Chem Asian J. 2007;2(11):1340–1355. doi: 10.1002/asia.200700182
  • Wang J, Ma S, Chen X, et al. Hydrogen-bonded liquid crystalline polymers containing poly(4-vinylpridine) and dendron-like side chains: Fromlamellar to columnar phase. Mater Today Commun. 2015;4:77–85. doi: 10.1016/j.mtcomm.2015.06.002
  • Prodanov MF, Pogorelova NV, Kryshtal AP, et al. Thermodynamically stable dispersions of quantum dots in a nematic liquid crystal. Langmuir. 2013;29(30):9301–9309. doi: 10.1021/la401475b
  • Allcock HR, Ravikiran R, Olshavsky MA. Synthesis and characterization of hindered polyphosphazenes via functionalized intermediates: exploratory models for electro-optical materials. Macromolecules. 1998;31(16):5206–5214. doi: 10.1021/ma971072m
  • Imrie CT, Lu ZB, Picken SJ, et al. Oligomeric rod–disc nematic liquid crystals. Chem Commun. 2007;2007(12):1245–1247. doi: 10.1039/B614922G
  • Gehringer L, Bourgogne C, Guillon D, et al. Liquid-crystalline octopus dendrimers: block molecules with unusual mesophase morphologies. J Am Chem Soc. 2004;126(12):3856–3867. doi: 10.1021/ja031506v
  • Lenoble J, Campidelli S, Maringa N, et al. Liquid-crystalline janus-type fullerodendrimers displaying tunable smectic-columnar mesomorphism. J Am Chem Soc. 2007;129(32):9941–9952. doi: 10.1021/ja071012o
  • Guillon D, Skoulios A. Conjectures on the smectic-a behavior of dissymmetric and strongly polar mesogens. J Phys. 1984;45(3):607–621. doi: 10.1051/jphys:01984004503060700

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.