354
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Fluorinated liquid crystals and their mixtures giving polar phases with enhanced low-temperature stability

, , , , , , & show all
Pages 558-568 | Received 05 Oct 2023, Accepted 12 Jan 2024, Published online: 25 Jan 2024

References

  • Zhang Y-S, Liu C-Y, Emelyanenko AV, et al. Synthesis of predesigned ferroelectric liquid crystals and their applications in field-sequential color displays. Adv Funct Mater. 2018;28(14):1706994. doi: 10.1002/adfm.201706994
  • Guo Y, Li X, Mu Q, et al. Single electro-optic curve for RGB colours in blue-phase liquid crystal display. Liq Cryst. 2019;46(6):835–845. doi: 10.1080/02678292.2018.1530384
  • Liu C-K, Chen W-H, Li C-Y, et al. High-contrast and scattering-type transflective liquid crystal displays based on polymer-network liquid crystals. Polymers. 2020;12(4):739. doi: 10.3390/polym12040739
  • Manda R, Pagidi S, Lim YJ, et al. Self-supported liquid crystal film for flexible display and photonic applications. J Mol Liq. 2019;291:111314. doi: 10.1016/j.molliq.2019.111314
  • Jiang B, Liu L, Gao Z, et al. Fast dual-stimuli-responsive dynamic surface wrinkles with high bistability for smart windows and rewritable optical displays. ACS Appl Mater Interfaces. 2019;11(43):40406–40415. doi: 10.1021/acsami.9b10747
  • Fuh AYG, Chih SY, Wu ST. Advanced electro-optical smart window based on PSLC using a photoconductive TiOPc electrode. Liq Cryst. 2018;45(6):864–871. doi: 10.1080/02678292.2017.1397214
  • Li X, Zhang M, Zhang C, et al. A bistable ion-doped cholesteric liquid crystal smart window with a small amount of polymer. Opt Mater. 2023;138:113659. doi: 10.1016/j.optmat.2023.113659
  • Guo Q, Xu L, Sun J, et al. Fast switching beam steering based on ferroelectric liquid crystal phase shutter and polarisation grating. Liq Cryst. 2019;46(9):1383–1388. doi: 10.1080/02678292.2019.1573327
  • Tian L-L, Chu F, Duan W, et al. Beam steering device based on blue phase liquid crystal. Opt Commun. 2021;481:126525. doi: 10.1016/j.optcom.2020.126525
  • Gallego S, Puerto D, Morales-Vidal M, et al. Tunable waveguides couplers based on HPDLC for see-through applications. Polymers. 2021;13(11):1858. doi: 10.3390/polym13111858
  • Liu X, Qu C, Zhou S, et al. Simple and stable gas–liquid two-phase optical fiber sensor for acetone based on cholesteric liquid crystal. Opt Commun. 2023;526:128890. doi: 10.1016/j.optcom.2022.128890
  • Zou J, Yang Q, Hsiang E-L, et al. Fast-response liquid crystal for spatial light modulator and LiDAR applications. Crystals. 2021;11(2):93. doi: 10.3390/cryst11020093
  • Residori S, Bortolozzo U, Huignard JP. Liquid crystal light valves as optically addressed liquid crystal spatial light modulators: optical wave mixing and sensing applications. Liq Cryst Rev. 2018;6(1):1–16. doi: 10.1080/21680396.2018.1496041
  • Cestari M, Diez-Berart S, Dunmur DA, et al. Phase behavior and properties of the liquid-crystal dimer 1′′,7′′-bis(4-cyanobiphenyl-4′-yl) heptane: a twist-bend nematic liquid crystal. Phys Rev E. 2011;84(3):031704. doi: 10.1103/PhysRevE.84.031704
  • Nishikawa H, Shiroshita K, Higuchi H, et al. A fluid liquid-crystal material with highly polar order. Adv Mater. 2017;29(43):1702354. doi: 10.1002/adma.201702354
  • Mandle RJ, Cowling SJ, Goodby JW. A nematic to nematic transformation exhibited by a rod-like liquid crystal. Phys Chem Chem Phys. 2017;19(18):11429–11435. doi: 10.1039/C7CP00456G
  • Chen X, Korblova E, Dong D, et al. First-principles experimental demonstration of ferroelectricity in a thermotropic nematic liquid crystal: polar domains and striking electro-optics. Proc Natl Acad Sci. 2020;117(25):14021–14031. doi: 10.1073/pnas.2002290117
  • Li J, Wang Z, Deng M, et al. General phase-structure relationship in polar rod-shaped liquid crystals: importance of shape anisotropy and dipolar strength. Giant. 2022;11:100109. doi: 10.1016/j.giant.2022.100109
  • Li J, Nishikawa H, Kougo J, et al. Development of ferroelectric nematic fluids with giant-ε dielectricity and nonlinear optical properties. Sci Adv. 2021;7(17):eabf5047. doi: 10.1126/sciadv.abf5047
  • Meyer RB, Liebert L, Strzelecki L, et al. Ferroelectric liquid crystals. J Phys Lett. 1975;36(3):69–71. doi: 10.1051/jphyslet:0197500360306900
  • Link DR, Natale G, Shao R, et al. Spontaneous formation of macroscopic chiral domains in a fluid smectic phase of achiral molecules. Science. 1997;278(5345):1924–1927. doi: 10.1126/science.278.5345.1924
  • Takezoe H, Takanishi Y. Bent-core liquid crystals: their mysterious and attractive world. Jpn J Appl Phys. 2006;45(2R):597. doi: 10.1143/JJAP.45.597
  • Jákli A, Lavrentovich OD, Selinger JV. Physics of liquid crystals of bent-shaped molecules. Rev Mod Phys. 2018;90(4):045004. doi: 10.1103/RevModPhys.90.045004
  • Gorecka E, Pociecha D, Araoka F, et al. Ferroelectric phases in a chiral bent-core smectic liquid crystal: dielectric and optical second-harmonic generation measurements. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Top. 2000;62(4 Pt A):R4524–4527.
  • Niori T, Sekine T, Watanabe J, et al. Distinct ferroelectric smectic liquid crystals consisting of banana shaped achiral molecules. J Mater Chem. 1996;6(7):1231–1233. doi: 10.1039/jm9960601231
  • Sebastián N, Čopič M, Mertelj A. Ferroelectric nematic liquid-crystalline phases. Phys Rev E. 2022;106(2):021001. doi: 10.1103/PhysRevE.106.021001
  • Sebastián N, Cmok L, Mandle RJ, et al. Ferroelectric-ferroelastic phase transition in a nematic liquid crystal. Phys Rev Lett. 2020;124(3):037801. doi: 10.1103/PhysRevLett.124.037801
  • Zhao X, Zhou J, Li J, et al. Spontaneous helielectric nematic liquid crystals: electric analog to helimagnets. Proc Natl Acad Sci. 2021;118(42):e2111101118. doi: 10.1073/pnas.2111101118
  • Chen X, Martinez V, Korblova E, et al. The smectic ZA phase: antiferroelectric smectic order as a prelude to the ferroelectric nematic. Proc Natl Acad Sci. 2023;120(8):e2217150120. doi: 10.1073/pnas.2217150120
  • Kikuchi H, Matsukizono H, Iwamatsu K, et al. Fluid layered ferroelectrics with global C∞v symmetry. Adv Sci. 2022;9(26):2202048. doi: 10.1002/advs.202202048
  • Chen X, Martinez V, Nacke P, et al. Observation of a uniaxial ferroelectric smectic a phase. Proc Natl Acad Sci. 2022;119(47):e2210062119. doi: 10.1073/pnas.2210062119
  • Song Y, Deng M, Wang Z, et al. Emerging ferroelectric uniaxial lamellar (smectic AF) fluids for bistable in-plane polarization memory. J Phys Chem Lett. 2022;13(42):9983–9990. doi: 10.1021/acs.jpclett.2c02846
  • Yadav N, Panarin YP, Jiang W, et al. Spontaneous mirror symmetry breaking and chiral segregation in the achiral ferronematic compound DIO. Phys Chem Chem Phys. 2023;25(13):9083–9091. doi: 10.1039/D3CP00357D
  • Yadav N, Panarin YP, Vij JK, et al. Two mechanisms for the formation of the ferronematic phase studied by dielectric spectroscopy. J Mol Liq. 2023;378:121570. doi: 10.1016/j.molliq.2023.121570
  • Manabe A, Bremer M, Kraska M. Ferroelectric nematic phase at and below room temperature. Liq Cryst. 2021;48(8):1079–1086. doi: 10.1080/02678292.2021.1921867
  • Mandle RJ, Cowling SJ, Goodby JW. Rational design of rod-like liquid crystals exhibiting two nematic phases. Chem – Eur J. 2017;23(58):14554–14562. doi: 10.1002/chem.201702742
  • Matsukizono H, Iwamatsu K, Endo S, et al. Synthesis of liquid crystals bearing 1,3-dioxane structures and characterization of their ferroelectricity in the nematic phase. J Mater Chem C. 2023;11(18):6183–6190. doi: 10.1039/D2TC05363B
  • Cruickshank E, Walker R, Storey JMD, et al. The effect of a lateral alkyloxy chain on the ferroelectric nematic phase. RSC Adv. 2022;12(45):29482–29490. doi: 10.1039/D2RA05628C
  • Pociecha D, Walker R, Cruickshank E, et al. Intrinsically chiral ferronematic liquid crystals: an inversion of the helical twist sense at the chiral nematic – chiral ferronematic phase transition. J Mol Liq. 2022;361:119532. doi: 10.1016/j.molliq.2022.119532
  • Song Y, Li J, Xia R, et al. Development of emergent ferroelectric nematic liquid crystals with highly fluorinated and rigid mesogens. Phys Chem Chem Phys. 2022;24(19):11536–11543. doi: 10.1039/D2CP01110G
  • Nishimura S, Masuyama S, Shimizu G, et al. Lowering of electrostatic actuator driving voltage and increasing generated force using spontaneous polarization of ferroelectric nematic liquid crystals. Adv Phys Res. 2022;1(1):2200017. doi: 10.1002/apxr.202200017
  • Mandle RJ. A new order of liquids: polar order in nematic liquid crystals. Soft Matter. 2022;18(27):5014–5020. doi: 10.1039/D2SM00543C
  • Mandle RJ, Cowling SJ, Goodby JW. Structural variants of RM734 in the design of splay nematic materials. Liq Cryst. 2021;48(12):1780–1790. doi: 10.1080/02678292.2021.1934740
  • Cruickshank E, Rybak P, Majewska MM, et al. To be or not to be polar: the ferroelectric and antiferroelectric nematic phases. ACS Omega. 2023;8(39):36562–36568. doi: 10.1021/acsomega.3c05884
  • Mertelj A, Cmok L, Sebastián N, et al. Splay nematic phase. Phys Rev X. 2018;8(4):041025. doi: 10.1103/PhysRevX.8.041025
  • Mandle RJ, Sebastián N, Martinez-Perdiguero J, et al. On the molecular origins of the ferroelectric splay nematic phase. Nat Commun. 2021;12(1):4962. doi: 10.1038/s41467-021-25231-0
  • Long H, Li J, Huang M, et al. Mixing-induced phase stabilization and low-temperature-shifting of ferroelectric nematics. Liq Cryst. 2022;49(15):2121–2127. doi: 10.1080/02678292.2022.2104947
  • Chen X, Zhu Z, Magrini MJ, et al. Ideal mixing of paraelectric and ferroelectric nematic phases in liquid crystals of distinct molecular species. Liq Cryst. 2022;49(11):1531–1544. doi: 10.1080/02678292.2022.2058101
  • Clark NA, Chen X, Maclennan JE, et al. Dielectric spectroscopy of ferroelectric nematic liquid crystals: measuring the capacitance of insulating interfacial layers. arXiv:220809784. 2022.
  • Madhusudana NV. Simple molecular model for ferroelectric nematic liquid crystals exhibited by small rodlike mesogens. Phys Rev E. 2021;104(1):014704. doi: 10.1103/PhysRevE.104.014704
  • Li J, Xia R, Xu H, et al. How far can we push the rigid oligomers/polymers toward ferroelectric nematic liquid crystals? J Am Chem Soc. 2021;143(42):17857–17861. doi: 10.1021/jacs.1c09594

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.