233
Views
0
CrossRef citations to date
0
Altmetric
Rapid Communication

High-g-factor phase-matched second harmonic generation near photonic bandgap of polar cholesteric liquid crystals

, , , &
Pages 536-542 | Received 18 Jul 2023, Accepted 16 Jan 2024, Published online: 25 Jan 2024

References

  • Mandle RJ, Cowling SJ, Goodby JW. A nematic to nematic transformation exhibited by a rod-like liquid crystal. Phys Chem Chem Phys. 2017;19(18):11429–11435. doi: 10.1039/C7CP00456G
  • Mertelj A, Cmok L, Sebastián N, et al. Splay nematic phase. Phys Rev X. 2018;8(4):41025. doi: 10.1103/PhysRevX.8.041025
  • Chen X, Korblova E, Dong D, et al. First-principles experimental demonstration of ferroelectricity in a thermotropic nematic liquid crystal: polar domains and striking electro-optics. Proc Natl Acad Sci U S A. 2020;117(25):14021–14031. doi: 10.1073/pnas.2002290117
  • Li J, Nishikawa H, Kougo J, et al. Development of ferroelectric nematic fluids with giant-ε dielectricity and nonlinear optical properties. Sci Adv. 2021;7(17):eabf5047. doi: 10.1126/sciadv.abf5047
  • Zhao X, Zhou J, Li J, et al. Spontaneous helielectric nematic liquid crystals: Electric analog to helimagnets. Proc Natl Acad Sci U S A. 2021;118(42):e2111101118. doi: 10.1073/pnas.2111101118
  • Folcia C, Ortega J, Vidal R, et al. The ferroelectric nematic phase: an optimum liquid crystal candidate for nonlinear optics. Liq Cryst. 2022;49(6):899–906. doi: 10.1080/02678292.2022.2056927
  • Mandle RJ. A new order of liquids: polar order in nematic liquid crystals. Soft Matter. 2022;18(27):5014–5020. doi: 10.1039/D2SM00543C
  • Zhao X, Long H, Xu H, et al. Nontrivial phase matching in helielectric polarization helices: universal phase matching theory, validation, and electric switching. Proc Natl Acad Sci U S A. 2022;119(29):e2205636119. doi: 10.1073/pnas.2205636119
  • Zhao X, Huang M, Aya S. Research progress of ferroelectric nematic liquid crystals. Chin J Liq Cryst Disp. 2023;38(1):77–94. doi: 10.37188/CJLCD.2022-0130
  • De Gennes P-G, Prost J. The physics of liquid crystals. New York: Oxford university press; 1993.
  • Chen Q, Xu C, Liang X, et al. Helical structure endows liquid crystal planar optics with a customizable working band. Adv Quantum Technol. 2023;6(2):2200153. doi: 10.1002/qute.202200153
  • Khoo IC. Cholesteric and blue-phase liquid photonic crystals for nonlinear optics and ultrafast laser pulse modulations. Liq Cryst Rev. 2018;6(1):53–77. doi: 10.1080/21680396.2018.1509387
  • Ren M, Xu J, Lan P, et al. Roadmap on nonlinear optics-focus on Chinese research. J Phys Photonics. 2023;5:32501.
  • Zhao X, Li J, Huang M, et al. High-g-factor phase-matched circular dichroism of second harmonic generation in chiral polar liquids. J Mater Chem C. 2023;11(25):8547–8552. doi: 10.1039/D3TC00981E
  • Petralli-Mallow T, Wong T, Byers J, et al. Circular dichroism spectroscopy at interfaces: a surface second harmonic generation study. J Phys Chem. 1993;97(7):1383–1388. doi: 10.1021/j100109a022
  • Belardini A, Larciprete MC, Centini M, et al. Circular dichroism in the optical second-harmonic emission of curved gold metal nanowires. Phys Rev Lett. 2011;107(25):257401. doi: 10.1103/PhysRevLett.107.257401
  • Kajikawa K, Isozaki T, Takezoe H, et al. Mirrorless microcavity spontaneously formed in ferroelectric liquid crystals. Jpn J Appl Phys. 1992;31(6A):L679. doi: 10.1143/JJAP.31.L679
  • Furukawa T, Yamada T, Ishikawa K, et al. Helicoidal distributed-feedback cavity action in a ferroelectric liquid crystal. Appl Phys B. 1995;60(5):485–487. doi: 10.1007/BF01081331
  • Hoshi H, Chung D-H, Ishikawa K, et al. Special phase matching of second-harmonic generation in helical ferroelectric liquid crystal cells. Phys Rev E. 2001;63(5):56610. doi: 10.1103/PhysRevE.63.056610
  • Drevenšek-Olenik I, Čopič M. Phase-matched optical second-harmonic generation in helically twisted smectic-C* phase. Phys Rev E. 1997;56(1):581–591. doi: 10.1103/PhysRevE.56.581
  • Ortega J, Folcia CL, Etxebarria J. Second harmonic generation in anisotropic stratified media: a generalization of the Berreman method and its application to photonicmaterials. Opt Express. 2023;31(22):36966–36980. doi: 10.1364/OE.497447

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.