57
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Liquid crystallinity and magnetorheological performance of polymeric liquid crystal magnetic composites

, , , &
Pages 618-632 | Received 15 Sep 2023, Accepted 01 Feb 2024, Published online: 13 Feb 2024

References

  • Pei P, Peng Y. Constitutive modeling of magnetorheological fluids: a review. J Magn Magn Mater. 2022;550:169076. doi: 10.1016/j.jmmm.2022.169076
  • Tian Z, Chen F, Wu X, et al. A novel preparation process for magnetorheological fluid with high sedimentation stability. Mater Manuf Process. 2016;31(15):2030–2036. doi: 10.1080/10426914.2016.1198032
  • Choi SB. Sedimentation stability of magnetorheological fluids: the state of the art and challenging issues. Micromachines. 2022;13(11):1904. doi: 10.3390/mi13111904
  • Fang FF, Liu YD, Choi HJ, et al. Core–shell structured carbonyl iron microspheres prepared via dual-step functionality coatings and their magnetorheological response. ACS Appl Mater Inter. 2011;3(9):3487–3495. doi: 10.1021/am200714p
  • Thiagarajan S, Koh AS. Performance and stability of magnetorheological fluids—a detailed review of the state of the art. Adv Eng Mater. 2021;23(6):2001458. doi: 10.1002/adem.202001458
  • De Vicente J, Klingenberg DJ, Hidalgo-Alvarez R. Magnetorheological fluids: a review. Soft Matter. 2011;7(8):3701–3710. doi: 10.1039/c0sm01221a
  • Morillas JR, De Vicente J. Yielding behavior of model magnetorheological fluids. Soft Matter. 2019;15(16):3330–3342. doi: 10.1039/C9SM00275H
  • Zuzhi T, Fei C, Xiangfan W, et al. A novel preparation process for magnetorheological fluid with high sedimentation stability. Mater Manuf Process. 2016;31(15):2030–2036. doi: 10.1080/10426914.2016.1198032
  • Shu Q, Ding L, Hu T. High performance magnetorheological elastomers strengthened by perpendicularly interacted flax fiber and carbonyl iron chain. Smart Mater Struct. 2020;29(2):025010. doi: 10.1088/1361-665X/ab5e49
  • Li H, Chen F, Han M, et al. Preparation of a novel magnetorheological fluid for high temperatures. Soft Matter. 2021;17(45):10350–10358. doi: 10.1039/D1SM01018B
  • Wang G, Geng J, Guo T, et al. Magneto-stimuli rheological response of hierarchical Fe3O4 submicron spheres for high performance magnetorheological fluid. Ceram Int. 2022;48(19):29031–29038. doi: 10.1016/j.ceramint.2022.04.265
  • Vėžys J, Dragašius E, Volkovas V, et al. The sedimentation of magneto-rheological fluid monitoring system based on resistivity measuring. Mechanics. 2016;22(5):449–452. doi: 10.5755/j01.mech.22.5.14958
  • Shen C, Oda Y, Matsubara M, et al. Magnetorheological fluids with surface-modified iron oxide magnetic particles with controlled size and shape. ACS Appl Mater Inter. 2021;13(17):20581–20588. doi: 10.1021/acsami.1c03225
  • Tong Y, Li X, Zhao P, et al. Improved magnetorheological properties by using ionic liquid as carrier liquid of magnetorheological fluids. Front Mater. 2021;8:659998. doi: 10.3389/fmats.2021.659998
  • Gadekar P, Kanthale VS, Khaire ND. Magnetorheological fluid and its applications. Int J Curr Eng Technol. 2017;7:32–37.
  • Wang Y, Xie W, Wu D. Rheological properties of magnetorheological suspensions stabilized with nanocelluloses. Carbohydr Polym. 2020;231:115776. doi: 10.1016/j.carbpol.2019.115776
  • Lee JY, Kwon SH, Choi HJ. Magnetorheological characteristics of carbonyl iron microparticles with different shapes. Korea-Aust Rheol J. 2019;31(1):41–47. doi: 10.1007/s13367-019-0005-6
  • Chen F, Li H, Han M, et al. Preparation of magnetorheological fluid with excellent sedimentation stability. Mater Manuf Process. 2020;35(10):1077–1083. doi: 10.1080/10426914.2020.1765250
  • Lee J, Hong K, Kwon SH, et al. Suspension rheology and magnetorheological finishing characteristics of biopolymer-coated carbonyliron particles. Ind Eng Chem Res. 2017;56(9):2416–2244. doi: 10.1021/acs.iecr.6b03790
  • Manzoor MT, Kim JE, Jung JH, et al. Two-dimensional rGO-MoS2 hybrid additives for high-performance magnetorheological fluid. Sci Rep. 2018;8(1):12672. doi: 10.1038/s41598-018-30861-4
  • Vinod S, John R, Philip J. Magnetorheological properties of sodium sulphonate capped electrolytic iron based MR fluid: a comparison with CI based MR fluid. Smart Mater Struct. 2016;26(2):025003. doi: 10.1088/1361-665X/aa52fa
  • Wang X, Pu S, Ji H, et al. Enhanced magnetic-field-induced optical properties of nanostructured magnetic fluids by doping nematic liquid crystals. Nanoscale Res Lett. 2012;7(1):249. doi: 10.1186/1556-276X-7-249
  • Shrivastav GP, Siboni NH, Klapp SHL. Steady-state rheology and structure of soft hybrid mixtures of liquid crystals and magnetic nanoparticles. Soft Matter. 2020;16(10):2516–2527. doi: 10.1039/C9SM02080B
  • Bisoyi HK, Kumar S. Discotic nematic liquid crystals: science and technology. Chem Soc Rev. 2010;39(1):264–285. doi: 10.1039/B901792P
  • Shang X, Cuypers D, Chen F, et al. Dual-frequency liquid crystal-polymer grating for fast response optical beam steering. Smart Mater Struct. 2019;28(10):105036. doi: 10.1088/1361-665X/ab3b2e
  • Minori AF, He Q, Glick PE, et al. Reversible actuation for self-folding modular machines using liquid crystal elastomer. Smart Mater Struct. 2020;29(10):105003. doi: 10.1088/1361-665X/ab9fd6
  • Okutan M, Köysal O, San SE, et al. Temperature dependency of impedance spectroscopy behaviors in side-chain liquid crystalline polymer. J Non-Cryst Solids. 2009;355(52–54):2674–2677. doi: 10.1016/j.jnoncrysol.2009.08.046
  • Atta NF, Ekram H, Galal A. Evidence of core-shell formation between NdFeO3 nano-perovskite and ionic liquid crystal and its application in electrochemical sensing of metoclopramide. J Electrochem Soc. 2016;163(7):B325. doi: 10.1149/2.0741607jes
  • Chandrasekhar S. Liquid crystals. Rep Prog Phys. 1976;39(7):613. doi: 10.1088/0034-4885/39/7/001
  • Baev AR, Korobko EV, Novikova ZA. Acoustical properties of magnetorheological fluids under applied magnetic field. J Intell Mat Syst Struct. 2015;26(14):1913–1919. doi: 10.1177/1045389X15586448
  • Kumar A, Kwatra P, Meena H, et al. Recent advances on semiconducting nanomaterials–ferroelectric liquid crystals nanocomposites. J Phys-Condens Matter. 2021;34(1):013004. doi: 10.1088/1361-648X/ac2ace
  • Meng ZY, Chen L, Zhong HY, et al. Effect of different dimensional carbon nanoparticles on the shape memory behavior of thermotropic liquid crystalline polymer. Compos Sci Technol. 2017;138:8–14. doi: 10.1016/j.compscitech.2016.11.006
  • Neto AMF, Saba MMF. Determination of the minimum concentration of ferrofluid required to orient nematic liquid crystals. Phys Rev A. 1986;34(4):3483. doi: 10.1103/PhysRevA.34.3483
  • Bulavin LА, Lisetski LN, Minenko SS, et al. Microstructure and optical properties of nematic and cholesteric liquid crystals doped with organo-modified platelets. J Mol Liq. 2018;267:279–285. doi: 10.1016/j.molliq.2017.12.078
  • Merekalov AS, Shandryuk GA, Bezborodov VS, et al. Three in one: mesogenic aromatic acid as a liquid crystal matrix, a chiral dopant in liquid crystals and a stabilizer for nanoparticles. J Mol Liq. 2019;276:588–594. doi: 10.1016/j.molliq.2018.12.036
  • Podoliak N, Buchnev O, Bavykin DV, et al. Magnetite nanorod thermotropic liquid crystal colloids: synthesis, optics and theory. J Colloid Interf Sci. 2012;386(1):158–166. doi: 10.1016/j.jcis.2012.07.082
  • Kopčanský P, Tomašovičová N, Koneracká M, et al. Structural phase transition in liquid crystal doped with gold nanoparticles. Acta Phys Polonica A. 2010;118(5):988–989. doi: 10.12693/APhysPolA.118.988
  • Berejnov V, Bacri JC, Cabuil V, et al. Lyotropic ferronematics: magnetic orientational transition in the discotic phase. Europhys Lett. 1998;41(5):507. doi: 10.1209/epl/i1998-00182-9
  • Buluy O, Nepijko S, Reshetnyak V, et al. Magnetic sensitivity of a dispersion of aggregated ferromagnetic carbon nanotubes in liquid crystals. Soft Matter. 2011;7(2):644–649. doi: 10.1039/C0SM00131G
  • Kredentser S, Buluy O, Davidson P, et al. Strong orientational coupling in two-component suspensions of rod-like nanoparticles. Soft Matter. 2013;9(20):5061–5066. doi: 10.1039/c3sm27881f
  • Chapoy LL, Marcher B, Rasmussen KH. The morphology of liquid-crystalline polymers and the possible consequences for their rheological behaviour. Liq Cryst. 1988;3(12):1611–1636. doi: 10.1080/02678298808086625
  • Bury P, Veveričík M, Černobila F, et al. Effect of liquid crystalline host on structural changes in magnetosomes based ferronematics. Nanomaterials. 2021;11(10):2643. doi: 10.3390/nano11102643
  • Brochard F, De Gennes PG. Spreading laws for liquid polymer droplets: interpretation of the «foot». J Physique Lett. 1984;45(12):597–602. doi: 10.1051/jphyslet:019840045012059700
  • Matuo CY, Tourinho FA, Souza MH, et al. Lyotropic ferronematic liquid crystals based on new Ni, Cu and Zn ionic magnetic fluids. Braz J Phys. 2002;32(2b):458–463. doi: 10.1590/S0103-97332002000300003
  • Mertelj A, Lisjak D. Ferromagnetic nematic liquid crystals. Liq Cryst Rev. 2017;5(1):1–33. doi: 10.1080/21680396.2017.1304835
  • Matuo CY, Tourinho FA, Neto A. Determination of the minimum concentrations of ferrofluid of CoFe2O4 required to orient liquid crystals. J Magn Magn Mater. 1993;122(1–3):53–56. doi: 10.1016/0304-8853(93)91038-9
  • Eremin A, Nádasi H, Stannarius R. Multifunctionality by dispersion of magnetic nanoparticles in anisotropic matrices. Phys Sci Rev. 2020;7(9):1033–1061. doi: 10.1515/psr-2019-0111
  • Alomari A, Pour M, Lindquist RG. Magnetic and optical study of nematic liquid crystal E7 mixed Fe3O4 ferrofluid. IEEE Trans Magn. 2019;55(12):1–7. doi: 10.1109/TMAG.2019.2936806
  • Xu L, Chen M, Hao J. Ferrofluids of thermotropic liquid crystals by DNA–lipid hybrids. J Phys Chem B. 2017;121(2):420–425. doi: 10.1021/acs.jpcb.6b09595
  • Dierking I, Yoshida S, Kelly T, et al. Liquid crystal–ferrofluid emulsions. Soft Matter. 2020;16(26):6021–6031. doi: 10.1039/D0SM00880J
  • Ibrahim RK, Mahmood AI, Gdovinova V, et al. Magnetic liquid switching using rodlike ferronematic 6CHBT liquid crystal mixture depending on the diffraction patterns. Iraqi J Sci. 2021;465–474. doi: 10.24996/ijs.2021.62.2.12
  • Santiago-Quiñones DI, Acevedo A, Rinaldi C. Magnetic and magnetorheological characterization of a polymer liquid crystal ferronematic. J Appl Phys. 2009;105:07B512.
  • Diestra-Cruz H, Rinaldi C, Acevedo A. Rheological, optical, and thermal characterization of temperature-induced transitions in liquid crystal ferrosuspensions. J Appl Phys. 2012;111(7):07B308. doi: 10.1063/1.3672078
  • Tang X, Chang X, Zhang S, et al. Self-assembly and magnetorheological performance of Fe3O4-based liquid-crystalline composites. J Mol Liq. 2023;369:120927. doi: 10.1016/j.molliq.2022.120927
  • Tang X, Chang X, Wang J, et al. Liquid-crystalline ferroferric oxide nanocomposites: self-assembly and magnetorheological effects. J Mater Chem C. 2022;10(13):5155–5167. doi: 10.1039/D2TC00336H
  • An GS, Han JS, Shin JR, et al. Size-tunable carboxylic functionalized Fe3O4 nanoparticle and evaluation of its magnetic and dispersion properties. J Alloy Compd. 2019;792:1008–1012. doi: 10.1016/j.jallcom.2019.04.033
  • Nguyen PB, Do XP, Jeon J, et al. Brake performance of core–shell structured carbonyl iron/silica based magnetorheological suspension. J Magn Magn Mater. 2014;367:69–74. doi: 10.1016/j.jmmm.2014.04.061
  • Yuan X, Liu J, Qin J, et al. Smart ionic liquid/water mixture system with dual stimuli-response to temperature and CO2. Nano Res. 2022;1–8. doi: 10.1007/s12274-022-4612-z 16 3
  • Favier A, Charreyre MT. Experimental requirements for an efficient control of freeradical polymerizations via the reversible addition-fragmentation chain transfer (RAFT) process. Macromol Rapid Commun. 2006;27(9):653–692. doi: 10.1002/marc.200500839
  • Riou O, Zadoina L, Lonetti B, et al. In situ and ex situ syntheses of magnetic liquid crystalline materials: a comparison. Polymers. 2012;4(1):448–462. doi: 10.3390/polym4010448
  • Herrera-Posada S, Mora-Navarro C, Ortiz-Bermudez P, et al. Magneto-responsive liquid crystalline elastomer nanocomposites as potential candidates for dynamic cell culture substrates. Mater Sci Eng C. 2016;65:369–378. doi: 10.1016/j.msec.2016.04.063
  • Riou O, Lonetti B, Davidson P, et al. Liquid crystalline polymer–co nanorod hybrids: structural analysis and response to a magnetic field. J Phys Chem B. 2014;118(11):3218–3225. doi: 10.1021/jp410050z
  • Saliba S, Coppel Y, Davidson P, et al. Liquid crystal based on hybrid zinc oxide nanoparticles. J Mater Chem. 2011;21(19):6821–6823. doi: 10.1039/c1jm10525f
  • Liu YD, Fang FF, Choi HJ. Core–shell-structured silica-coated magnetic carbonyl iron microbead and its magnetorheology with anti-acidic characteristics. Colloid Polym Sci. 2011;289(11):1295–1298. doi: 10.1007/s00396-011-2452-6
  • Seo YP, Han S, Choi J, et al. Searching for a stable high‐performance magnetorheological suspension. Adv Mater. 2018;30(42):1704769. doi: 10.1002/adma.201704769
  • Zadoina L, Lonetti B, Soulantica K, et al. Liquid crystalline magnetic materials. J Mater Chem. 2009;19(43):8075–8078. doi: 10.1039/b915075g
  • Wang G, Zhao D, Li N, et al. Facile synthesis of hierarchically structured flower-like Fe3O4 microspheres for high-performance magnetorheological fluids. J Ind Eng Chem. 2019;79:217–225. doi: 10.1016/j.jiec.2019.06.040
  • Hong JY, Jang J. Highly stable, concentrated dispersions of graphene oxide sheets and their electro-responsive characteristics. Soft Matter. 2012;8(28):7348–7350. doi: 10.1039/c2sm25865j
  • Zhang Y, Li D, Zhang Z. The study of magnetorheological fluids sedimentation behaviors based on volume fraction of magnetic particles and the mass fraction of surfactants. Mater Res Express. 2020;6(12):126–127. doi: 10.1088/2053-1591/ab5ed8
  • Pu HT, Jiang FJ, Yang Z, et al. Effects of polyvinylpyrrolidone and carbon nanotubes on magnetorheological properties of iron-based magnetorheological fluids. J Appl Polym Sci. 2006;102(2):1653–1657. doi: 10.1002/app.24049
  • Mertelj A, Lisjak D, Drofenik M, et al. Ferromagnetism in suspensions of magnetic platelets in liquid crystal. Nature. 2013;504(7479):237–241. doi: 10.1038/nature12863

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.