110
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Faster and low-power-operated highly luminescent CdSe nanoplatelets incorporated ferroelectric liquid crystals

, , &
Pages 633-640 | Received 30 Dec 2023, Accepted 01 Feb 2024, Published online: 13 Feb 2024

References

  • Ren H, Fan YH, Gauza S, et al. Tunable-focus flat liquid crystal spherical lens. Appl Phys Lett. 2004;84(23):4789–4791. doi: 10.1063/1.1760226
  • Sharma V, Kumar A, Ganguly P, et al. Highly sensitive bovine serum albumin biosensor based on liquid crystal. Appl Phys Lett. 2014;104(4):043705. doi: 10.1063/1.4863740
  • Pote N, Doke S, Lohar A, et al. Improvement in molecular ordering of ferroelectric liquid crystal by incorporating CuGaS2/ZnS core/shell quantum dots. Liq Cryst. 2023;50(5):809–818. doi: 10.1080/02678292.2023.2181994
  • Li Q. Liquid crystals beyond displays: chemistry, physics, and applications. New Jersey (NJ): John Wiley & Sons; 2012.
  • Meyer RB, Liebert L, Strzelecki L, et al. Ferroelectric liquid crystals. J Physique Lett. 1975;36(3):69–71. doi: 10.1051/jphyslet:0197500360306900
  • Clark NA, Lagerwall ST. Submicrosecond bistable electro‐optic switching in liquid crystals. Appl Phys Lett. 1980;36(11):899–901. doi: 10.1063/1.91359
  • Kumar A, Prakash J, Mehta D, et al. Enhanced photoluminescence in gold nanoparticles doped ferroelectric liquid crystals. Appl Phys Lett. 2009;95(2):023117. doi: 10.1063/1.3179577
  • Ganguly P, Kumar A, Tripathi S, et al. Faster and highly luminescent ferroelectric liquid crystal doped with ferroelectric BaTiO3 nanoparticles. Appl Phys Lett. 2013;102(22):222902. doi: 10.1063/1.4809515
  • Joshi T, Ganguly P, Haranath D, et al. Tuning the photoluminescence of ferroelectric liquid crystal by controlling the size of dopant ZnO quantum dots. Mater Lett. 2014;114:156–158. doi: 10.1016/j.matlet.2013.09.110
  • Tessier MD, Javaux C, Maksimovic I, et al. Spectroscopy of single CdSe nanoplatelets. ACS Nano. 2012;6(8):6751–6758. doi: 10.1021/nn3014855
  • Shirasaki Y, Supran GJ, Bawendi MG, et al. Emergence of colloidal quantum-dot light-emitting technologies. Nat Photonics. 2013;7(1):13–23. doi: 10.1038/nphoton.2012.328
  • Kim D, Ndaya D, Bosire R, et al. Dynamic magnetic field alignment and polarized emission of semiconductor nanoplatelets in a liquid crystal polymer. Nat Commun. 2022;13(1):1–10. doi: 10.1038/s41467-022-30200-2
  • Mertelj A, Lisjak D, Drofenik M, et al. Ferromagnetism in suspensions of magnetic platelets in liquid crystal. Nature. 2013;504(7479):237–241. doi: 10.1038/nature12863
  • Glotzer SC. Shape matters. Nature. 2012;481(7382):450–452. doi: 10.1038/481450a
  • Liu Q, Yuan Y, Smalyukh II. Electrically and optically tunable plasmonic guest–host liquid crystals with long-range ordered nanoparticles. Nano Lett. 2014;14(7):4071–4077. doi: 10.1021/nl501581y
  • Zhang Y, Liu Q, Mundoor H, et al. Metal nanoparticle dispersion, alignment, and assembly in nematic liquid crystals for applications in switchable plasmonic color filters and E-polarizers. ACS Nano. 2015;9(3):3097–3108. doi: 10.1021/nn5074644
  • Gabinet UR, Lee C, Poling-Skutvik R, et al. Nanocomposites of 2D-MoS2 exfoliated in thermotropic liquid crystals. ACS Mater Lett. 2021;3(6):704–712. doi: 10.1021/acsmaterialslett.1c00222
  • Gabinet UR, Lee C, Kim NK, et al. Magnetic field alignment and optical anisotropy of MoS2 nanosheets dispersed in a liq cryst polymer. J Phys Chem Lett. 2022;13(34):7994–8001. doi: 10.1021/acs.jpclett.2c01819
  • Singh D, Pandey S, Manohar R, et al. Time-resolved fluorescence and absence of Förster resonance energy transfer in ferroelectric liquid crystal-quantum dots composites. J Lumin. 2017;190:161–170. doi: 10.1016/j.jlumin.2016.09.056
  • Pandey FP, Singh S. Time resolved fluorescence and Raman properties, and zeta potential of zinc ferrite nanoparticles dispersed nematic liquid crystal 4′-heptyl-4-biphenylcarbonitrile (7CB). J Mol Liq. 2020;315:113820. doi: 10.1016/j.molliq.2020.113820
  • Polovitsyn A, Dang Z, Movilla JL, et al. Synthesis of air-stable CdSe/ZnS core–shell nanoplatelets with tunable emission wavelength. Chem Mater. 2017;29(13):5671–5680. doi: 10.1021/acs.chemmater.7b01513
  • Doke S, Ganguly P, Mahamuni S. Improvement in molecular alignment of ferroelectric liquid crystal by Co-ZnO/ZnO core/shell quantum dots. Liq Cryst. 2020;47(3):309–316. doi: 10.1080/02678292.2019.1645898
  • Pathak G, Agrahari K, Yadav G, et al. Tuning of birefringence, response time, and dielectric anisotropy by the dispersion of fluorescent dye into the nematic liquid crystal. Appl Phys A. 2018;124(7):1–9. doi: 10.1007/s00339-018-1878-9
  • Skarp K. Rotational viscosities in ferroelectric smectic liquid crystals. Ferroelectrics. 1988;84(1):119–142. doi: 10.1080/00150198808016217
  • Pote N, Doke S, Haque MA, et al. Improved electro-optical properties of ferroelectric liquid crystal by incorporating alloyed quaternary ZnCuGaS2/ZnS core/shell quantum dots. Liq Cryst. 2023:1–9. doi: 10.1080/02678292.2023.2276841
  • Guzelturk B, Erdem O, Olutas M, et al. Stacking in colloidal nanoplatelets: tuning excitonic properties. ACS Nano. 2014;8(12):12524–12533. doi: 10.1021/nn5053734
  • Abécassis B, Tessier MD, Davidson P, et al. Self-assembly of CdSe nanoplatelets into giant micrometer-scale needles emitting polarized light. Nano Lett. 2014;14(2):710–715. doi: 10.1021/nl4039746
  • Tessier MD, Biadala L, Bouet C, et al. Phonon line emission revealed by self-assembly of colloidal nanoplatelets. ACS Nano. 2013;7(4):3332–3340. doi: 10.1021/nn400833d
  • Manohar R, Singh DP, Pandey S, et al. Analysis of faster optical response in core/shell nanocrystals ferroelectric liquid crystal composite. Photon Lett Poland. 2015;7(4):97–99. doi: 10.4302/plp.2015.4.04
  • Doke S, Sonawane K, Raghavendra Reddy V, et al. Low power operated highly luminescent ferroelectric liquid crystal doped with CdSe/ZnSe core/shell quantum dots. Liq Cryst. 2018;45(10):1518–1524. doi: 10.1080/02678292.2018.1449260
  • der Beek D V, Petukhov A, Davidson P, et al. Magnetic-field-induced orientational order in the isotropic phase of hard colloidal platelets. Phys Rev E. 2006;73(4):041402. doi: 10.1103/PhysRevE.73.041402
  • Davidson P, Penisson C, Constantin D, et al. Isotropic, nematic, and lamellar phases in colloidal suspensions of nanosheets. Proc Natl Acad Sci, USA. 2018;115(26):6662–6667. doi: 10.1073/pnas.1802692115
  • Eliseev AA, Eliseev AA, Trusov LA, et al. Rotational dynamics of colloidal hexaferrite nanoplates. Appl Phys Lett. 2018;113(11):113106. doi: 10.1063/1.5044728
  • Mertelj A, Lampret B, Lisjak D, et al. Evolution of nematic and ferromagnetic ordering in suspensions of magnetic nanoplatelets. Soft Matter. 2019;15(27):5412–5420. doi: 10.1039/C9SM00949C
  • Li L-S, Huang JY. Tailoring switching properties of dipolar species in ferroelectric liquid crystal with ZnO nanoparticles. J Phys D Appl Phys. 2009;42(12):125413. doi: 10.1088/0022-3727/42/12/125413
  • Pandey S, Vimal T, Singh DP, et al. Core/Shell quantum dots in ferroelectric liquid crystals matrix: effect of spontaneous polarisation coupling with dopant. Liq Cryst. 2016;43(7):980–993. doi: 10.1080/02678292.2016.1155768
  • Vimal T, Pujar G, Agrahari K, et al. Nanoparticle surface energy transfer (NSET) in ferroelectric liquid crystal–metallic-silver nanoparticle composites: Effect of dopant concentration on NSET parameters. Phys Rev E. 2021;103(2):022708. doi: 10.1103/PhysRevE.103.022708
  • Singh BP, Sikarwar S, Agarwal S, et al. Chemically functionalized gold nanosphere-blended nematic liquid crystals for photonic applications. ACS Omega. 2023;8(2):2315–2327. doi: 10.1021/acsomega.2c06718
  • Holly Haggar JI, Ghataora SS, Trinito V, et al. Study of the luminescence decay of a semipolar green light-emitting diode for visible light communications by time-resolved electroluminescence. ACS Photonics. 2022;9(7):2378–2384. doi: 10.1021/acsphotonics.2c00414
  • Pandey FP, Rastogi A, Singh S. Optical properties and zeta potential of carbon quantum dots (CQDs) dispersed nematic liquid crystal 4′-heptyl-4-biphenylcarbonitrile (7CB). Opt Mater. 2020;105:109849. doi: 10.1016/j.optmat.2020.109849
  • Schaller RD, Sykora M, Jeong S, et al. High-efficiency carrier multiplication and ultrafast charge separation in semiconductor nanocrystals studied via time-resolved photoluminescence. J Phys Chem B. 2006;110(50):25332–25338. doi: 10.1021/jp065282p
  • Chang M, Li L, Hu H, et al. Using fractional intensities of time-resolved fluorescence to sensitively quantify NADH/NAD+ with genetically encoded fluorescent biosensors. Sci Rep. 2017;7(1):1–9. doi: 10.1038/s41598-017-04051-7

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.