90
Views
0
CrossRef citations to date
0
Altmetric
Research Article

The influence of the side-arms structure on the properties of the liquid crystal dimers centred on mandelic acid

, , , , , & show all
Pages 670-684 | Received 02 Sep 2023, Accepted 17 Feb 2024, Published online: 23 Feb 2024

References

  • Yelamaggad CV, Shanker G, Hiremath US, et al. Cholesterol-based nonsymmetric liquid crystal dimers: an overview. J Mater Chem. 2008;18(25):2927–2949. doi: 10.1039/b804579h
  • Ge ZX, Wang YM, Sun JT, et al. Synthesis and characterisation of novel aromatic ester swallow-tailed cholesteric liquid crystal polymers. Liq Cryst. 2023;50(11–12):1759–1773. doi: 10.1080/02678292.2023.2208084
  • Huang YM, Guo YT, Ma QL, et al. Synthesis and characterization of a cholesteric liquid crystal cholesteryl nonanoate. Key Eng Mater. 2010;428:94–97. doi: 10.4028/www.scientific.net/KEM.428-429.94
  • Huang HZ, Cong YH, Lin Z, et al. Synthesis and properties of side-chain liquid crystalline polymers grafted with chiral dimers containing cholesteryl groups. Liq Cryst. 2020;47(5):723–736. doi: 10.1080/02678292.2019.1675192
  • Huang HZ, Cong YH, Hu B, et al. Liquid-crystalline dimers containing cholesteryl groups and azobenzene moieties with branched allyl chain: synthesis and properties. Liq Cryst. 2021;48(4):564–578. doi: 10.1080/02678292.2020.1798524
  • Huang HZ, Cong YH, Du A, et al. Liquid crystalline dimers containing a cholesteryl group: chiral smectic phases, and re-entrant TGBA* phase. J Mol Liq. 2022;346:117920. doi: 10.1016/j.molliq.2021.117920
  • Yu RW, Zhao JH, Wu LM, et al. Colourful patterns prepared using a cholesteric liquid crystal mixture with both thermochromic and photochromic properties. Liq Cryst. 2023;50(11–12):1951–1959. doi: 10.1080/02678292.2023.2226631
  • Kurosaki Y, Sagisaka T, Matsushima T, et al. Chiral, thermally irreversible and quasi‐stealth photochromic dopant to control selective reflection wavelength of cholesteric liquid crystal. Chemphyschem. 2020;21(13):1375–1383. doi: 10.1002/cphc.202000309
  • Zong XN, Fang ZM, Wu CC. Synthesis and mesomorphic properties of a series of dimers derived from thioether-terminated and cholesteryl. Liq Cryst. 2018;45(12):1844–1853. doi: 10.1080/02678292.2018.1501109
  • Yoshida H, Kobashi J. Flat optics with cholesteric and blue phase liquid crystals. Liq Cryst. 2016;43(13):1909–1919. doi: 10.1080/02678292.2016.1199057
  • Sun CL, Lu JG. Optical filters based on cholesteric, blue and sphere mesophases. Polymers. 2022;14(22):4898. doi: 10.3390/polym14224898
  • Gao Y, Luo YX, Lu JG. High-reflective templated cholesteric liquid crystal filters. Molecules. 2021;26(22):6889. doi: 10.3390/molecules26226889
  • Jeong MY, Kwak K. Continuously tunable and bandwidth variable optical notch/band-pass filters over 500 nm spectral range using cholesteric liquid crystals. IEEE Photon J. 2018;11(1):1–11. doi: 10.1109/JPHOT.2018.2884965
  • Wei W, Farooq MA, Xiong H. Cholesteric liquid crystalline polyether with broad tunable circularly polarized luminescence. Langmuir. 2021;37(40):11922–11930. doi: 10.1021/acs.langmuir.1c02144
  • Chen QM, Peng ZH, Li Y, et al. Multi-plane augmented reality display based on cholesteric liquid crystal reflective films. Opt Express. 2019;27(9):12039–12047. doi: 10.1364/OE.27.012039
  • Liu CY, Yen CF, Hung YH, et al. Polymer-stabilized bistable dual-frequency cholesteric liquid crystal devices assisted by a predesigned chiral dopant. J Mater Chem C. 2021;9(46):16672–16681. doi: 10.1039/D1TC04354D
  • Shiu JW, Lee KC, Liang CC, et al. A rugged display: recent results of flexible cholesteric liquid‐crystal displays. J Soc Inf Disp. 2009;17(10):811–820. doi: 10.1889/JSID17.10.811
  • Ryabchun A, Sakhno O, Stumpe J, et al. Full‐polymer cholesteric composites for transmission and reflection holographic gratings. Adv Opt Mater. 2017;5(17):1700314. doi: 10.1002/adom.201700314
  • Fuh AYG, Lin TH, Chen YY, et al. Optical control of the rotation of cholesteric liquid crystal gratings. Opt Express. 2019;27(8):10806–10812. doi: 10.1364/OE.27.010806
  • Ryabchun A, Bobrovsky A. Cholesteric liquid crystal materials for tunable diffractive optics. Adv Opt Mater. 2018;6(15):1800335. doi: 10.1002/adom.201800335
  • Zeng TB, Xie J, Zhou YJ, et al. Selectively reflective edge detection system based on cholesteric liquid crystal. Opt Lett. 2023;48(3):795–798. doi: 10.1364/OL.481980
  • Hong HJ, Nasrollahi A, Park SY. Transparent UV-blocking photonic film based on reflection of cholesteric liquid crystals. J Mol Liq. 2021;344:117739. doi: 10.1016/j.molliq.2021.117739
  • Zhang BB, Lin XY, You YX, et al. Flexible thermal responsive infrared reflector based on cholesteric liquid crystals and polymer stabilized cholesteric liquid crystals. Opt Express. 2019;27(9):13516–13525. doi: 10.1364/OE.27.013516
  • Pieraccini S, Ferrarini A, Spada GP. Chiral doping of nematic phases and its application to the determination of absolute configuration. Chiralit. 2008;20(5):749–759. doi: 10.1002/chir.20482
  • Kühn C, Bremer M, Schreiner PR. Highly efficient chirality inducers in nematic liquid crystals: synthesis of 7,7’-disubstituted 2,2’-methylenedioxy-1,1’-binaphthyls. Liq Cryst. 2019;46(12):1763–1768. doi: 10.1080/02678292.2019.1599455
  • Chen XS, Xu ZX, Chen Z, et al. The effect of molecular structure on mesophase behaviour of non-symmetric liquid crystal dimers containing mandelic acid and fluorine group. Liq Cryst. 2020;47(7):1055–1069. doi: 10.1080/02678292.2019.1704897
  • Imrie CT, Henderson PA. Liquid crystal dimers and higher oligomers: between monomers and polymers. Chem Soc Rev. 2007;36(12):2096–2124. doi: 10.1039/b714102e
  • Imrie CT, Henderson PA, Yeap GY. Liquid crystal oligomers: going beyond dimers. Liq Cryst. 2009;36(6–7):755–777. doi: 10.1080/02678290903157455
  • Donaldson T, Staesche H, Lu ZB, et al. Symmetric and non-symmetric chiral liquid crystal dimers. Liq Cryst. 2010;37(8):1097–1110. doi: 10.1080/02678292.2010.494412
  • Zong XN, Wu CC. Synthesis and mesogenic properties of liquid crystals based on cholesterol and cinnamic acid derivatives. Mol Cryst Liq Cryst. 2018;666(1):40–53. doi: 10.1080/10691316.2018.1541843
  • Huang HZ, Cong YH, Du A, et al. Liquid crystalline dimers containing a cholesteryl group: chiral smectic phases and TGBA* phase. Liq Cryst. 2021;48(12):1733–1749. doi: 10.1080/02678292.2021.1900431
  • Li J, Cong YH, Huang HZ, et al. Liquid crystalline dimers containing a cholesteryl benzoate unit: smectic phase, chiral nematic phase and blue phase. New J Chem. 2022;46(19):9024–9035. doi: 10.1039/D2NJ00386D
  • Huang HZ, Li J, Du A, et al. Bent-structure liquid crystalline dimers containing a cholesteryl group exhibiting blue phases. Cryst Growth Des. 2022;22(12):7478–7490. doi: 10.1021/acs.cgd.2c01045
  • Jiang Y, Gao YM, Lin ZR, et al. Synthesis and characterisation of novel chiral smectic liquid crystalline elastomers containing menthol dimer-type side chain. Liq Cryst. 2018;45(12):1783–1794. doi: 10.1080/02678292.2018.1487090
  • Al-Shargabi A, Yeap GY, Mahmood WAK, et al. Liquid crystal dimers containing cholesteryl and triazole-containing mesogenic units. Liq Cryst. 2020;47(2):219–230. doi: 10.1080/02678292.2019.1641637
  • Donaldson T, Henderson PA, Achard MF, et al. Non-symmetric chiral liquid crystal trimers. Liq Cryst. 2011;38(10):1331–1339. doi: 10.1080/02678292.2011.613265
  • Lee HC, Lu Z, Henderson PA, et al. Cholesteryl-based liquid crystal dimers containing a sulfur–sulfur link in the flexible spacer. Liq Cryst. 2012;39(2):259–268. doi: 10.1080/02678292.2011.641753
  • Donaldson T, Henderson PA, Achard MF, et al. Chiral liquid crystal tetramers. J Mater Chem A. 2011;21(29):10935–10941. doi: 10.1039/c1jm10992h
  • Mandle RJ, Goodby JW. Optically active bimesogens incorporating branched central spacers. RSC Adv. 2018;8(33):18542–18548. doi: 10.1039/C8RA02075B
  • Senthil S, Rameshbabu K, Wu SL. Odd–even effect on SmC* formation in chiral liquid crystal dimers. J Mol Struct. 2006;783(1–3):215–220. doi: 10.1016/j.molstruc.2005.08.030
  • Yeap GY, Balamurugan S, Rakesh S. Synthesis and mesomorphic properties of chiral liquid crystal dimers derived from azobenzene and substituted naphthol. Liq Cryst. 2013;40(4):555–563. doi: 10.1080/02678292.2013.765608
  • Zang XY, Gao L, Zhang R, et al. Fluorinated chiral nematic liquid crystal dimers based on (S)-1-phenylethane-1,2-diol. Liq Cryst. 2020;47(5):689–701. doi: 10.1080/02678292.2019.1673907
  • Dong L, Xu ZX, Tao HZ, et al. Non-symmetric chiral nematic liquid crystal dimers containing trifluoromethyl and 1,2-propanediol. Liq Cryst. 2018;45(12):1734–1745. doi: 10.1080/02678292.2018.1469171
  • Zhang W, Tian M. The influence of flexible spacer and the chirality of the core on the formation of chiral nematic phase of symmetric dimers containing trifluoromethyl terminal. Liq Cryst. 2019;46(9):1452–1466. doi: 10.1080/02678292.2019.1597191
  • Majewska MM, Forsyth E, Pociecha D, et al. Controlling spontaneous chirality in achiral materials: liquid crystal oligomers and the heliconical twist-bend nematic phase. ChemComm. 2022;58(34):5285–5288. doi: 10.1039/D1CC07012F
  • Ding JW, Zhang M, Dai HX, et al. Enantioseparation of chiral mandelic acid derivatives by supercritical fluid chromatography. Chirality. 2018;30(12):1245–1256. doi: 10.1002/chir.23018
  • Świsłocka R, Świderski G, Nasiłowska J, et al. Research on the electron structure and antimicrobial properties of mandelic acid and its alkali metal salts. Int J Mol Sci. 2023;24(4):3078. doi: 10.3390/ijms24043078
  • Belcher R, Sykes A, Tatlow JC. Mandelic acid and halogen-substituted mandelic acids as reagents for the determination of zirconium. Anal Chim Acta. 1954;10:34–47. doi: 10.1016/S0003-2670(00)89622-1
  • Wang QZ, Geng SS, Wang LR, et al. Bacterial mandelic acid degradation pathway and its application in biotechnology. J Appl Microbiol. 2022;133(2):273–286. doi: 10.1111/jam.15529
  • Egner P, Pavlačková J, Sedlaříková J, et al. Non-alcohol hand sanitiser gels with mandelic acid and essential oils. Int J Mol Sci. 2023;24(4):3855. doi: 10.3390/ijms24043855
  • Jacobs SW, Culbertson EJ. Effects of topical mandelic acid treatment on facial skin viscoelasticity. Facial Plast Surg. 2018;34(6):651–656. doi: 10.1055/s-0038-1676048
  • Yao M, Chen XS, Dong L, et al. Synthesis and properties of new non-symmetric liquid crystal dimers containing mandelic acid and cyano group. Liq Cryst. 2018;45(6):931–941. doi: 10.1080/02678292.2017.1417504
  • Chen R, Weng Q, Wang L, et al. The effect of intermolecular actions on the nematic phase range of tolane-liquid crystals. Liq Cryst. 2018;45(5):783–792. doi: 10.1080/02678292.2017.1402096
  • Shi DQ, Hu K, Chen P, et al. Improved nematic mesophase stability of benzoxazole-liquid crystals via modification of inter-ring twist angle of biphenyl unit. Liq Cryst. 2016;43(10):1397–1407. doi: 10.1080/02678292.2016.1177742
  • Li JL, Peng ZH, Chen R, et al. Investigation of terminal olefine in the isothiocyanatotolane liquid crystals with alkoxy end group. Liq Cryst. 2018;45(10):1498–1507. doi: 10.1080/02678292.2018.1449026
  • Luo CC, Jia YG, Sun BF, et al. The effect of chain length in terminal groups on the mesomorphic behavior of novel (-) -menthol-based chiral liquid crystal compounds with a blue phase. New J Chem. 2017;41(9):3677–3686. doi: 10.1039/C7NJ00099E
  • Chen R, Qin YY, An ZW, et al. The effect of phenyl ring on the physical properties of liquid crystals containing 4-pyridyl terminal group. Liq Cryst. 2018;45(12):1825–1833. doi: 10.1080/02678292.2018.1499973
  • Hu K, Chen P, Weng Q, et al. Improved mesophase stability of benzoxazole derivatives via dipole moment modification. Liq Cryst. 2015;42(11):1643–1653. doi: 10.1080/02678292.2015.1084656
  • Thaker BT, Patel P. Synthesis and characterization of liquid crystalline materials incorporating the novel 4-amino-1, 2, 4-triazole and isonicotinic acid hydrazide moiety. Mol Cryst. 2008;482(1):3–20. doi: 10.1080/15421400801915050
  • Paterson DA, Gao M, Kim YK, et al. Understanding the twist-bend nematic phase: the characterisation of 1-(4-cyanobiphenyl-4′-yloxy)-6-(4-cyanobiphenyl-4′-yl) hexane (CB6OCB) and comparison with CB7CB. Soft Matter. 2016;12(32):6827–6840. doi: 10.1039/C6SM00537C
  • Chen XS, Tao HZ, Dong L, et al. Mesomorphic properties of non-symmetric three-arm chenodeoxycholic acid-derived liquid crystals. Liq Cryst. 2019;46(3):442–453. doi: 10.1080/02678292.2018.1508768
  • Yang DP, Yang YG, Liu YF. A theoretical study on the red-and blue-shift hydrogen bonds of cis-trans formic acid dimer in excited states. Cent Eur J Chem. 2013;11(2):171–179. doi: 10.2478/s11532-012-0143-x

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.