135
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Synthesis, mesomorphic and magnetic properties at room temperature of biphenyl ester-aromatic imine with terminal alkoxy chains and methoxy substituent

, , , , &
Pages 685-695 | Received 21 Jul 2023, Accepted 17 Feb 2024, Published online: 04 Mar 2024

References

  • Rajak P, Nath LK, Bhuyan B. Liquid crystals: an approach in drug delivery. Indian J Pharm Sci. 2019;81(1):11–21. doi: 10.4172/pharmaceutical-sciences.1000474
  • Collings PJ, Goodby JW. Introduction to liquid crystals: chemistry and physics. Boca Raton (FL): CRC Press; 2019.
  • Kim YK, Noh J, Nayani K, et al. Soft matter from liquid crystals. Soft Matter. 2019;15(35):6913–6929. doi: 10.1039/C9SM01424A
  • Pincus P. Magnetic properties of liquid crystals. J Appl Phys. 1970;41(3):974–979. doi: 10.1063/1.1659047
  • Carlescu I, editor. Liquid crystals: self-organized soft functional materials for advanced applications. London (UK): BoD–Books on Demand; 2019.
  • Khoo IC. Liquid crystals. Hoboken (NJ): John Wiley and Sons; 2022.
  • Choudhury PK, M A Ibrahim A-B, editors. Liquid crystals. London (UK): IntechOpen. 2022.
  • Lueder E, Knoll P, Lee SH. Liquid crystal displays: addressing schemes and electro-optical effects. Hoboken (NJ): John Wiley and Sons; 2022.
  • Wang D, Park SY, Kang IK. Liquid crystals: emerging materials for use in real-time detection applications. J Mater Chem C. 2015;3(35):9038–9047. doi: 10.1039/C5TC01321F
  • Palffy-Muhoray P. Orientationally ordered soft matter: the diverse world of liquid crystals. Electronic-Liquid Crystal Communications (E-LC). 2007;60(9):54–60. doi: 10.1063/1.2784685
  • Bury P, Veveričík M, Černobila F, et al. Study of structural changes in nematic liquid crystals doped with magnetic nanoparticles using surface acoustic waves. Crystals. 2020;10(11):1023. doi: 10.3390/cryst10111023
  • Ghamsari MS, Carlescu I, editors. Liquid crystals and display technology. London (UK): BoD–Books on Demand; 2020.
  • Ha ST, Koh TM, Lee SL, et al. Synthesis of new schiff base ester liquid crystals with a benzothiazole core. Liq Cryst. 2010;37(5):547–554. doi: 10.1080/02678291003710425
  • Zafiropoulos NA, Choi EJ, Dingemans T, et al. New all-aromatic liquid crystal architectures. Chem Mater. 2008;20(12):3821–3831. doi: 10.1021/cm701862w
  • Goodby JW, Collings PJ, Kato T, et al., editors. Handbook of liquid crystals. Vol. 7. Weinheim (Germany):Wiley-VCH; 2014
  • Demus D, Goodby JW, Gray GW, et al., editors. Handbook of liquid crystals, volume 2A: low molecular weight liquid crystals I: calamitic liquid crystals. Weinheim (Germany): John Wiley and Sons; 2011.
  • Ting TX, Sarjadi MS, Rahman ML. Influences of central units and terminal chains on the banana-shaped liquid crystals. Crystals. 2020;10(10):857. doi: 10.3390/cryst10100857
  • Paterson DA, Crawford CA, Pociecha D, et al. The role of a terminal chain in promoting the twist-bend nematic phase: the synthesis and characterisation of the 1-(4-cyanobiphenyl-4′-yl)-6-(4-alkyloxyanilinebenzylidene-4′-oxy) hexanes. Liq Cryst. 2018;45(13–15):2341–2351. doi: 10.1080/02678292.2018.1525503
  • Jamain Z, Khairuddean M, Zulbaharen NN, et al. Synthesis, characterization and determination of mesophase transition of azo-azomethine derivatives with different terminal chain lengths. Malays J Chem. 2019;22:73–85.
  • Kumar S. Chemistry of discotic liquid crystals: from monomers to polymers. Boca Raton (FL): CRC press; 2016.
  • Fornasieri G, Guittard F, G Ribaldi S. Influence of the structure of the mesogenic core on the thermotropic properties of ω-unsaturated fluorinated liquid crystals. Liq Cryst. 2003;30(2):251–257. doi: 10.1080/0267829031000065155
  • Prasad R. Physics and technology for engineers: understanding materials and sustainability. Germany: Springer Nature Switzerland; 2023.
  • Fulay P, Lee J. Electronic, magnetic, and optical materials. United States: CRC Press; 2016.
  • Coey JMD. Magnetism and magnetic materials. India: Cambridge University Press; 2010.
  • Wagner D. Introduction to the theory of magnetism: international series of monographs in natural philosophy. Vol. 48. Netherlands: Elsevier Science; 2013.
  • Selwood PW. Magnetochemistry. Redditch (UK): Read Books Limited; 2013.
  • Coronado E, Delhaès P, Gatteschi D, et al. Molecular magnetism: from molecular assemblies to the devices. Dordrecht(Netherlands): Springer Science and Business Media; 2013.
  • Miller JS. Organic-and molecule-based magnets. Mater Today. 2014;17(5):224–235. doi: 10.1016/j.mattod.2014.04.023
  • Miyashiro S, Ishii T, Miura Y, et al. Synthesis and magnetic properties of stable radical derivatives carrying a phenylacetylene unit. Molecules. 2018;23(2):371. doi: 10.3390/molecules23020371
  • Liu X, Ma X, Cen P, et al. A substituent effect of phenylacetic acid coligand perturbed structures and magnetic properties observed in two triple-bridged azido-cu (II) chain compounds with ferromagnetic ordering and slow magnetic relaxation. Dalton Trans. 2017;46(23):7556–7566. doi: 10.1039/C7DT01338H
  • Uchida Y, Ikuma N, Tamura R, et al. Unusual intermolecular magnetic interaction observed in an all-organic radical liquid crystal. J Mater Chem. 2008;18(25):2950–2952. doi: 10.1039/b801704b
  • Umeta Y, Eimura H. Magnetic properties of organic radical fibers aligned in liquid crystals. Tokyo (Japan): MERIT Self-directed Joint Research; 2015.
  • Binnemans K, Galyametdinov YG, Van Deun R, et al. Rare-earth-containing magnetic liquid crystals. J Am Chem Soc. 2000;122(18):4335–4344. doi: 10.1021/ja993351q
  • Iskandar NAJTN, Yeap GY, Maeta N, et al. Anisotropic and magnetic properties in non-metal and non-radical organic aggregates of tri-substituted phenyl derivatives. New J Chem. 2020;44(1):210–217. doi: 10.1039/C9NJ02730K
  • Świątkowski M, Lanka S, Czylkowska A, et al. Structural, spectroscopic, thermal, and magnetic properties of a new dinuclear copper coordination compound with tiglic acid. Materials. 2021;14(9):2148. doi: 10.3390/ma14092148
  • Gas K, Sawicki M. In situ compensation method for precise integral SQUID magnetometry of miniscule biological, chemical, and powder specimens requiring the use of capsules. Materials. 2022;15(2):495. doi: 10.3390/ma15020495
  • Sawicki M, Stefanowicz W, Ney A. Sensitive SQUID magnetometry for studying nanomagnetism. Semicond Sci Technol. 2011;26(6):064006. doi: 10.1088/0268-1242/26/6/064006
  • Iskandar NAJTN, Yeap GY, Maeta N, et al. Enhancement of nematic and smectic C phases in soft condensed matter cored by 2,6-disubstituted naphthalene with varying terminal chains. Soft Mater. 2020;18(1):1–7. doi: 10.1080/1539445X.2019.1631847
  • Ha ST, Koh TM, Ong ST, et al. Benzothiazole as structural components in liquid crystals. Transworld Research Network. 2011;37(661):2.
  • Xie MG, Peng MS, Jiang Q, et al. Synthesis of schiff’s base and azo liquid crystalline crown ethers. Liq Cryst. 1996;21(4):461–467. doi: 10.1080/02678299608032855
  • Zhang SY, He KK, Zheng SJ, et al. Synthesis of schiff Base‐type liquid crystalline crown ethers containing Dibenzo‐18‐crown‐6 unit. Chin J Chem. 2004;22(4):395–399. doi: 10.1002/cjoc.20040220415
  • Artal MC, Ros MB, Serrano JL, et al. Antiferroelectric liquid-crystal gels. Chem Mater. 2001;13(6):2056–2067. doi: 10.1021/cm001254m
  • Bao W, Reddy Billa M, Kassireddy K, et al. Carbazole nematic liquid crystals. Liq Cryst. 2010;37(10):1289–1303. doi: 10.1080/02678292.2010.504862
  • Shi G, Li S, Shi P, et al. Distinct pathways of solid-to-solid phase transitions induced by defects: the case of dl-methionine. Int Union Crystallogr J. 2021;8(4):584–594. doi: 10.1107/S2052252521004401
  • Cheng SZ. Thermodynamics and kinetics of phase transitions. Phase Transitions Polymers. 2008;17–59.
  • Kelton KF, Greer AL. Nucleation in condensed matter: applications in materials and biology. Vol. 15. Amsterdam: Elsevier; 2010. p. 1–743.
  • Padmaja S, Ajita N, Srinivasulu M, et al. Crystallization kinetics in liquid crystals with hexagonal precursor phases by calorimetry. Z Naturforschung A. 2010;65(8–9):733–744. doi: 10.1515/zna-2010-8-916
  • Teoh WJ, Iskandar NAJTN, Yeap GY, et al. Experimental and computational studies of laterally ethoxy Schiff base-ester liquid crystalline magnets. Liq Cryst. 2022;49(6):875–885. doi: 10.1080/02678292.2022.2028027
  • Ismail SN, Yeap GY, Alshargabi A, et al. Synthesis and mesomorphic properties of bent liquid crystals containing triazole mesogenic unit with terminal flexible alkyl chain and laterally ethoxy substituted Schiff base. Liq Cryst. 2023;5:1–12.
  • Ong LK, Ha ST. Influence of linking group orientation on mesomorphism of two aromatic ring mesogens. J Chem. 2013;2013:5. doi: 10.1155/2013/864819
  • Zhu ZX, Luo CC, Wang JW, et al. Synthesis and properties of (−)-menthol-derived chiral liquid crystals by introducing adipoyloxy spacer between mesogenic core and chiral menthyl. Liq Cryst. 2018;45(10):1525–1534. doi: 10.1080/02678292.2018.1453557
  • Foo KL, Ha ST, Lee SL. Synthesis and characterization of thermotropic liquid crystals consisting heterocyclic benzothiazole core system. Asian J Chem. 2014;26(22):7627–7631. doi: 10.14233/ajchem.2014.17135
  • Thaker BT, Kanojiya JB, Tandel RS. Effects of different terminal substituents on the mesomorphic behavior of some azo-schiff base and azo-ester-based liquid crystals. Mol Cryst Liq Cryst. 2010;528(1):120–137. doi: 10.1080/15421406.2010.504632
  • Thaker BT, Kanojiya JB. Mesomorphic properties of liquid crystalline compounds with biphenyl moiety containing azo-ester, azo-cinnamate central linkages and different terminal group. Liq Cryst. 2011;38(8):1035–1055. doi: 10.1080/02678292.2011.594525
  • Qaddoura MA, Belfield KD. Synthesis, characterization and texture observations of calamitic liquid crystalline compounds. Int J Mol Sci. 2009;10(11):4772–4788. doi: 10.3390/ijms10114772
  • Fritsch L, Baptista LA, Bechtold IH, et al. Isoxazoline-and isoxazole-liquid crystalline schiff bases: a puzzling game dictated by entropy and enthalpy effects. J Mol Liq. 2020;298:111750. doi: 10.1016/j.molliq.2019.111750
  • Kahn O. Molecular magnetism. New York: Wiley-VCH; 1993.
  • Bain GA, Berry JF. Diamagnetic corrections and Pascal’s constants. J Chem Educ. 2008;85(4):532. doi: 10.1021/ed085p532
  • Alzoubi GM, Alsmadi AM, Alna’washi GA, et al. Coexistence of superparamagnetism and spin-glass like behavior in zinc-substituted cobalt ferrite nanoparticles. Appl Phys A. 2020;126(7):1–11. doi: 10.1007/s00339-020-03655-7
  • Chirita M, Bezergheanu A, Bazil Cizmas C, et al. Superparamagnetic-like micrometric single crystalline magnetite for biomedical application synthesis and characterization. Magnetochemistry. 2022;9(1):5. doi: 10.3390/magnetochemistry9010005

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.