90
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Chiral fluorescent liquid crystal polymers containing 4-bromo-1,8-naphthalimide – synthesis and properties

, , , , &
Pages 826-840 | Received 25 Dec 2023, Accepted 11 Mar 2024, Published online: 25 Mar 2024

References

  • Borsali R, Schroeder UP, Yoon DY, et al. Dynamic light scattering studies of cholesteric and polymer-stabilized cholesteric liquid crystals. Phys Rev E. 1998;58(3):R2717. doi: 10.1103/PhysRevE.58.R2717
  • Todorov T, Nikolova L, Tomova N. Polarization holography. 1: a new high-efficiency organic material with reversible photoinduced birefringence. Appl Optics. 1984; 23(23): 4309–4312.10.1364/AO.23.004309
  • Imrie CT, Karasz FE, Attard GS. Side-chain liquid-crystalline copolymers containing spacers of differing lengths. Macromolecules. 1992;25(4):1278–1283. doi: 10.1021/ma00030a012
  • Hamley IW, Castelletto V, Parras P, et al. Ordering on multiple lengthscales in a series of side group liquid crystal block copolymers containing a cholesteryl-based mesogen. Soft Matter. 2005;1(5):355–363. doi: 10.1039/b510512a
  • Ma YR, Zhang XS, Xie X, et al. Effect of chiral monomer containing D (+)-camphoric acid on the optical properties and phase behaviours of side-chain cholesteric liquid crystal polymers. Liq Cryst. 2021;48(5):699–712. doi: 10.1080/02678292.2020.1813340
  • Yao WH, Gao YZ, Li FS, et al. Influence of shorter backbone and cholesteric monomer percentage on the phase structures and thermal-optical properties of linear siloxane tetramers containing cholesterol and benzene methyl ether groups. RSC Adv. 2016;6(90):87502–87512. doi: 10.1039/C6RA17692E
  • Zhang JH, Wang QL, Wang JW, et al. Tuning the colour of glassy cholesteric liquid crystals using copolymerization of two left-handed menthyl- and cholesteryl-based mesogenic monomers. Liq Cryst. 2021;48(10):1467–1476. doi: 10.1080/02678292.2021.1881834
  • Ma XY, Li QC, Song CH, et al. The effect of different photoluminescent side-chain length on the phase behaviour of chiral liquid crystal polymer. Liq Cryst. 2022;49(11):1498–1510. doi: 10.1080/02678292.2022.2044527
  • Imrie CT, Karasz FE, Attard GS The effect of molecular-weight on the thermal-properties of polystyrene-based side-chain liquid-crystalline polymers. J Macromol Sci A. 1994; A31(9):1221–1232. doi: 10.1080/10601329409351547
  • Ryabchun A, Bobrovsky A, Stumpe J, et al. Rotatable diffraction gratings based on cholesteric liquid crystals with phototunable helix pitch. Adv Opt Mater. 2015;3(9):1273–1279. doi: 10.1002/adom.201500159
  • Bobrovsky A, Shibaev V, Bubnov A, et al. Effect of molecular structure on chiro-optical and photo-optical properties of smart liquid crystalline polyacrylates. Macromolecules. 2013;46(11):4276–4284. doi: 10.1021/ma401010t
  • Yoshizawa D, Higuchi H, Okumura Y, et al. Relationship between molecular structures of uniquely designed C 2-symmetric axially chiral dopants and their helical twisting properties in cholesteric liquid crystals. J Mater Chem C. 2019;7(8):2225–2231. doi: 10.1039/C8TC05296D
  • Zhang HQ, Qin AL. Tuning the helical twisting power of nematic liquid crystals induced by chiral 1, 2-propanediol derivatives using varied substituents. Chinese Chem Lett. 2012;23(1):37–40. doi: 10.1016/j.cclet.2011.09.019
  • Guimarães VG, Svanidze A, Guo T, et al. Synthesis and characterization of novel bio-chiral dopants obtained from bio-Betulin produced by a fermentation process. Crystals. 2021;11(7):785. doi: 10.3390/cryst11070785
  • Sadigh MK, Naziri P, Zakerhamidi MS, et al. Temperature dependent features of polymer stabilized cholesteric liquid crystals based on selected liquid crystal characteristics. Optik. 2021;230:166354. doi: 10.1016/j.ijleo.2021.166354
  • Guo R, Cao H, Yang C, et al. Bandwidth-controllable reflective cholesteric gels from photo-and thermally-induced processes. Liq Cryst. 2010; 37(3): 311–316.10.1080/02678290903548869
  • Woltman SJ, Jay GD, Crawford GP. Liquid-crystal materials find a new order in biomedical applications. Nat Mater. 2007;6(12):929–938. doi: 10.1038/nmat2010
  • Kamita G, Frka‐Petesic B, Allard A, et al. Biocompatible and sustainable optical strain sensors for large‐area applications. Adv Opt Mater. 2016;4(12):1950–1954. doi: 10.1002/adom.201600451
  • Qin L, Gu W, Wei J, et al. Piecewise phototuning of self‐organized helical superstructures. Adv Mater. 2018;30(8):1704941. doi: 10.1002/adma.201704941
  • Li Y, Urbas A, Li Q. Reversible light-directed red, green, and blue reflection with thermal stability enabled by a self-organized helical superstructure. J Am Chem Soc. 2012;134(23):9573–9576. doi: 10.1021/ja302772z
  • Bisoyi HK, Li Q. Light-driven liquid crystalline materials: from photo-induced phase transitions and property modulations to applications. Chem Rev. 2016;116(24):15089–15166. doi: 10.1021/acs.chemrev.6b00415
  • Broer DJ, Lub J, Mol GN. Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient. Nature. 1995;378(6556):467–469. doi: 10.1038/378467a0
  • Mitov M. Cholesteric liquid crystals with a broad light reflection band. Adv Mater. 2012;24(47):6260–6276. doi: 10.1002/adma.201202913
  • Makow DM, Sanders CL. Additive colour properties and colour gamut of cholesteric liquid crystals. Nature. 1978;276(5683):48–50. doi: 10.1038/276048a0
  • Ha NY, Ohtsuka Y, Jeong SM, et al. Fabrication of a simultaneous red–green–blue reflector using single-pitched cholesteric liquid crystals. Nat Mater. 2008;7(1):43–47. doi: 10.1038/nmat2045
  • Ha NY, Jeong SM, Nishimura S, et al. Color-temperature tunable white reflector using bichiral liquid crystal films. Opt Express. 2010;18(25):26339–26344. doi: 10.1364/OE.18.026339
  • Yang DK, West JL, C CL, et al. Control of reflectivity and bistability in displays using cholesteric liquid crystals. J Appl Phys. 1994; 76(2): 1331–1333.10.1063/1.358518
  • YC H, IV T, VY Z, et al. Hybrid anchoring for a color-reflective dual-frequency cholesteric liquid crystal device switched by low voltages. Opt Mater Express. 2015; 5(11): 2715–2720.10.1364/OME.5.002715
  • Coles H, Morris S. Liquid-crystal lasers. Nat Photonics. 2010;4(10):676–685. doi: 10.1038/nphoton.2010.184
  • Bayon C, Agez G, Mitov M. Size-effect of oligomeric cholesteric liquid-crystal microlenses on the optical specifications. Opt Lett. 2015;40(20):4763–4766. doi: 10.1364/OL.40.004763
  • Ye Q, Yan F, Kong D, et al. Synthesis and applications of fluorescent polymers as fluorescent probes. Curr Org Chem. 2016; 20(3): 266–288.
  • Poronik YM, Vygranenko KV, Gryko D, et al. Rhodols–synthesis, photophysical properties and applications as fluorescent probes. Chem Soc Rev. 2019;48(20):5242–5265. doi: 10.1039/C9CS00166B
  • Liu K, Shen Y, Li X, et al. Strong CPL of achiral liquid crystal fluorescent polymer via the regulation of AIE-active chiral dopant. Chem Commun. 2020;56(84):12829–12832. doi: 10.1039/D0CC05523A
  • Wu C, Chiu DT. Highly fluorescent semiconducting polymer dots for biology and medicine. Angew Chem Int Edit. 2013;52(11):3086–3109. doi: 10.1002/anie.201205133
  • Achyuthan KE, Bergstedt TS, Chen L, et al. Fluorescence superquenching of conjugated polyelectrolytes: applications for biosensing and drug discovery. J Mater Chem. 2005;15(27–28):2648–2656. doi: 10.1039/b501314c
  • Li B, He T, Shen X, et al. Fluorescent supramolecular polymers with aggregation induced emission properties. Polym Chem UK. 2019;10(7):796–818. doi: 10.1039/C8PY01396A
  • Li Y, Young DJ, Loh XJ. Fluorescent gels: a review of synthesis, properties, applications and challenges. Mater Chem Front. 2019;3(8):1489–1502. doi: 10.1039/C9QM00127A
  • Oshchepkov AS, Oshchepkov MS, Oshchepkova MV, et al. Naphthalimide‐based fluorescent polymers for molecular detection. Adv Opt Mater. 2021;9(6):2001913. doi: 10.1002/adom.202001913
  • Sheshashena Reddy T, Ram Reddy A. Synthesis and fluorescence study of naphthalimide-coumarin, naphthalimide-Luminol conjugates. J Fluoresc. 2014;24(6):1571–1580. doi: 10.1007/s10895-014-1440-x
  • Grabchev I, Chovelon JM. Synthesis and functional properties of green fluorescent poly (methylmethacrylate) for use in liquid crystal systems. Polym Advan Technol. 2003;14(9):601–608. doi: 10.1002/pat.376
  • Dong HQ, Wei TB, Ma XQ, et al. 1, 8-naphthalimide-based fluorescent chemosensors: recent advances and perspectives. J Mater Chem C. 2020;8(39):13501–13529. doi: 10.1039/D0TC03681A
  • Meng FB, Wang ZY, Chai GW, et al. Synthesis and characterization of fluorine-containing liquid crystalline polysiloxanes bearing cholesteryl cinnamate mesogens and trifluoromethyl-substituted mesogens. J Appl Polym Sci. 2010;116(4):2384–2395. doi: 10.1002/app.31760
  • Donaldson T, Henderson PA, Achard MF, et al. Chiral liquid crystal tetramers. J Mat Chem. 2011;21(29):10935–10941. doi: 10.1039/c1jm10992h
  • Dierking I. Ingo D. Chiral liquid crystals: structures, phases, effects. Symmetry. 2014;6(2):444–472. doi: 10.3390/sym6020444

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.