54
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Equilibrium surface force measurements in thin liquid crystal films

&
Received 10 Mar 2024, Accepted 18 May 2024, Published online: 14 Jun 2024

References

  • Chaikin PM, Lubensky TC. Principles of condensed matter physics. Cambridge, (UK): Cambridge University Press; 1995.
  • De Gennes PG, Prost J. The physics of liquid crystals. 2nd ed. Oxford, (UK): Oxford University Press; 1993.
  • Wood TA, Lintuvuori JS, Schofield AB, et al. A self-quenched defect glass in a colloid-nematic liquid crystal composite. Science. 2011;334(6052):79–83. doi: 10.1126/science.1209997
  • Zapotocky M, Ramos L, Poulin P, et al. Particle-stabilized defect gel in cholesteric liquid crystals. Science. 1999;283(5399):209–212. doi: 10.1126/science.283.5399.209
  • Stratford K, Henrich O, Lintuvuori JS, et al. Self-assembly of colloid-cholesteric composites provides a possible route to switchable optical materials. Nat Commun. 2014;5(1):3954. doi: 10.1038/ncomms4954
  • Lio GE, Ferraro A, Zappone B, et al. Unlocking optical coupling tunability in epsilon-near-zero metamaterials through liquid crystal nanocavities. Adv Opt Mater. 2024;12(13):2302483. doi: 10.1002/adom.202302483
  • Li Y, Ma X, Zhai X, et al. Manipulating polariton condensates by Rashba-Dresselhaus coupling at room temperature. Nat Commun. 2022;13(1):3785. doi: 10.1038/s41467-022-31529-4
  • Sharma M, Ellenbogen T. An all-optically controlled liquid-crystal plasmonic metasurface platform. Laser Photonics Rev. 2020;14(11):2000253. doi: 10.1002/lpor.202000253
  • Rechcińska K, Król M, Mazur R, et al. Engineering spin-orbit synthetic Hamiltonians in liquid-crystal optical cavities. Science. 2019;366(6466):727–730. doi: 10.1126/science.aay4182
  • Israelachvili JN. Intermolecular and surface forces. 3rd ed. Amsterdam: Academic Press; 2011.
  • Zappone B, Zheng W, Perkin S. Multiple-beam optical interferometry of anisotropic soft materials nanoconfined with the surface force apparatus. Rev Sci Instrum. 2018;89(8):085112. doi: 10.1063/1.5038951
  • Rasing T, Ie M. Surfaces and Interfaces of Liquid Crystals. Rasing T, Muševič I, editors. Berlin, Germany: Springer-Verlag; 2003.
  • Luengo G, Schmitt F-J, Hill R, et al. Thin film rheology and tribology of confined polymer melts: contrasts with bulk properties. Macromol. 1997;30(8):2482–2494. doi: 10.1021/ma9519122
  • Muševič I. Liquid crystal colloids. Cham, Switzerland: Springer International Publishing AG; 2017.
  • Israelachvili N, Adams GE. Measurement of forces between two mica surfaces in aqueous electrolyte solutions in the range 0-100 nm. J Chem Soc Faraday Trans 1. 1978;74(4):975–1001. doi: 10.1039/f19787400975
  • Israelachvili JN, McGuiggan PM. Adhesion and short-range forces between surfaces. Part I: new apparatus for surface force measurements. J Mater Res. 1990;5(10):2223–2231. doi: 10.1557/JMR.1990.2223
  • Hayler H, Groves TS, Guerrini A, et al. The surface force balance: Direct measurement of interactions in fluids and soft matter. Rep Prog Phys. 2024;87(4):046601. doi: 10.1088/1361-6633/ad2b9b
  • Christenson HK. Surface deformations in direct force measurements. Langmuir. 1996;12(5):1404–1405. doi: 10.1021/la9408127
  • Ruths M, Steinberg S, Israelachvili JN. Effects of confinement and shear on the properties of thin films of thermotropic liquid crystal. Langmuir. 1996;12(26):6637–6650. doi: 10.1021/la960412e
  • Dushkin CD, Kurihara K. Nanorheology of thin liquid crystal film studied by shear force resonance method. In: Kawasaki K, Lindman B, and Okabayashi H, editors. Formation and dynamics of self-organized structures in surfactants and polymer solutions. Progress in Colloid & Polymer science. Vol. 106. Darmstadt: Steinkopff; 1997. p. 262–265.
  • Dushkin CD, Kurihara K. Nanotribology of thin liquid-crystal films studied by the shear force resonance method. Colloids Surf A Physicochem Eng Asp. 1997;129-130:131–139. doi: 10.1016/S0927-7757(97)00031-9
  • Kumacheva E. Interfacial friction measurement in surface force apparatus. Prog Surf Sci. 1998;58(2):75–120. doi: 10.1016/S0079-6816(98)00017-3
  • Janik J, Tadmor R, Klein J. Shear of molecularly confined liquid crystals. 1. Orientation and Transitions under Confinement Langmuir. 1997;13(16):4466–4473. doi: 10.1021/la960452i
  • Janik J, Tadmor R, Klein J. Shear of molecularly confined liquid crystals. 2. Stress anisotropy across a model nematogen compressed between sliding solid surfaces. Langmuir. 2001;17(18):5476–5485. doi: 10.1021/la001392q
  • Artsyukhovich A, Broekman LD, Salmeron M. Friction of the liquid crystal 8CB as probed by the surface forces apparatus. Langmuir. 1999;15(6):2217–2223. doi: 10.1021/la980415m
  • Ruths M, Granick S. Influence of alignment of crystalline confining surfaces on static forces and shear in a liquid crystal, 4’-n-pentyl-4-cyanobiphenyl. Langmuir. 2000;16(22):8368–8376. doi: 10.1021/la000350z
  • Pieranski P, Jérôme B. Adsorption-induced anchoring transitions at nematic-liquid-crystal–crystal interfaces. Phys Rev A. 1989 01 07;40(1):317–322. doi: 10.1103/PhysRevA.40.317
  • Radoslovich EW. The structure of muscovite, KAl2(Si3Al)O10(OH)2. Acta Crystallogr. 1960;13(11):919–932. doi: 10.1107/S0365110X60002259
  • Baba M, Kakitani S, Ishii H, et al. Fine atomic image of mica cleavage planes obtained with an atomic force microscope (AFM) and a novel procedure for image processing. Chem Phys. 1997;221(1,2):23–31. doi: 10.1016/S0301-0104(97)00141-9
  • Blinov LM, Sonin AA. The interaction of nematic liquid crystals with anisotropic substrates. Mol Cryst Liq Cryst. 1990;179(1):13–25. doi: 10.1080/00268949008055372
  • Lee DW, Ruths M, Israelachvili JN. Surface forces and nanorheology of molecularly Thin films. In: Bhushan B, editor. Springer handbook of nanotechnology. 4th ed. Berlin & Heidelberg, Germany: Springer Verlag; 2017. p. 935–985.
  • Israelachvili JN. Thin film studies using multiple-beam interferometry. J Colloid Interface Sci. 1973;44(2):259–272. doi: 10.1016/0021-9797(73)90218-X
  • Zappone B, Bartolino R. Topological barriers to defect nucleation generate large mechanical forces in an ordered fluid. PNAS. 2020;118(44):e2110503118. doi: 10.1073/pnas.2110503118
  • Heuberger M. The extended surface forces apparatus. Part I. Fast spectral correlation interferometry. Rev Sci Instrum. 2001;72(3):1700–1707. doi: 10.1063/1.1347978
  • Heuberger M, Zäch M, Spencer ND. Density fluctuations under confinement: When is a fluid not a fluid? Science. 2001;292(5518):905–908. doi: 10.1126/science.1058573
  • Rabinowitz P. Eigenvalue analysis of the surface forces apparatus interferometer. J Opt Soc Am A. 1995;12(7):1593–1601. doi: 10.1364/JOSAA.12.001593
  • Zappone B, Richetti P, Barberi R, et al. Forces in nematic liquid crystals constrained to the nanometer scale under hybrid anchoring conditions. Phys Rev E. 2005;71(4):041703. doi: 10.1103/PhysRevE.71.041703
  • Berreman DW. Optics in stratified and anisotropic media: 4×4-matrix formulation. J Opt Soc Am. 1972;62(4):502–510. doi: 10.1364/JOSA.62.000502
  • Yeh P. Optics of anisotropic layered media: A new 4 × 4 matrix algebra. Surf Sci. 1980;96(1):41–53. doi: 10.1016/0039-6028(80)90293-9
  • Schwenzfeier KA, Erbe A, Bilotto P, et al. Optimizing multiple beam interferometry in the surface forces apparatus: novel optics, reflection mode modeling, metal layer thicknesses, birefringence, and rotation of anisotropic layers. Rev Sci Instrum. 2019;90(4):043908. doi: 10.1063/1.5085210
  • Binnig G, Quate CF, Gerber C. Atomic force microscope. Phys Rev Lett. 1986;56(9):930–933. doi: 10.1103/PhysRevLett.56.930
  • Butt H-J, Cappella B, Kappl M. Force measurements with the atomic force microscope: Technique, interpretation and applications. Surf Sci Rep. 2005;59(1):1–152. doi: 10.1016/j.surfrep.2005.08.003
  • Sader JE, Chon JWM, Mulvaney P. Calibration of rectangular atomic force microscope cantilevers. Rev Sci Instrum. 1999;70(10):3967–3969. doi: 10.1063/1.1150021
  • Sader JE, Larson I, Mulvaney P, et al. Method for the calibration of atomic force microscope cantilevers. Rev Sci Instrum. 1995;66(7):3789–3798. doi: 10.1063/1.1145439
  • Muševič I, Kočevar K, Kržič U, et al. Force spectroscopy based on temperature controlled atomic force microscope head using piezoresistive cantilevers. Rev Sci Instrum. 2005;76(4):043701. doi: 10.1063/1.1884191
  • Ducker WA, Senden TJ, Pashley RM. Direct measurement of colloidal forces using an atomic force microscope. Nature. 1991;353(6341):239–241. doi: 10.1038/353239a0
  • Jérôme B. Surface effects and anchoring in liquid crystals. Rep Prog Phys. 1991;54(3):391–452. doi: 10.1088/0034-4885/54/3/002
  • Jérôme B, Shen YR. Anchoring of nematic liquid crystals on mica in the presence of volatile molecules. Phys Rev E. 1993;48(6):4556–4574. doi: 10.1103/PhysRevE.48.4556
  • Jérôme B, O’Brien J, Ouchi Y, et al. Bulk reorientation driven by orientational transition in a liquid crystal monolayer. Phys Rev Lett. 1993;71(5):758–761. doi: 10.1103/PhysRevLett.71.758
  • Schuddeboom PC, Jérome B. Azimuthal anchoring of liquid crystals on surfaces with high symmetry. Phys Rev E. 1997;56(4):4294–4305. doi: 10.1103/PhysRevE.56.4294
  • Somers DAT, Garrett JL, Palm KJ, et al. Measurement of the Casimir torque. Nature. 2018;564(7736):386–389. doi: 10.1038/s41586-018-0777-8
  • Dubois-Violette E, De Gennes PG. Effects of long range van der Waals forces on the anchoring of a nematic fluid at an interface. J Colloid Interface Sci. 1976;57(3):403–410. doi: 10.1016/0021-9797(76)90219-8
  • Smith DPE, Heckl WM, Klagges HA. Ordering of alkylcyanobiphenyl molecules at MoS2 and graphite surfaces studied by tunneling microscopy. Surf Sci. 1992;278(1):166–174. doi: 10.1016/0039-6028(92)90592-T
  • Sheng P. Phase transition in surface-aligned nematic films. Phys Rev Lett. 1976;37(16):1059–1062. doi: 10.1103/PhysRevLett.37.1059
  • Sheng P. Boundary-layer phase transition in nematic liquid crystals. Phys Rev A. 1982;26(3):1610–1617. doi: 10.1103/PhysRevA.26.1610
  • Hsiung H, Rasing T, Shen YR. Wall-induced orientational order of a liquid crystal in the isotropic phase—an evanescent-wave-ellipsometry study. Phys Rev Lett. 1986;57(24):3065–3068. doi: 10.1103/PhysRevLett.57.3065
  • Poniewierski A, Sluckin TJ. Theory of the nematic-isotropic transition in a restricted geometry. Liq Cryst. 1987;2(3):281–311. doi: 10.1080/02678298708086677
  • Borštnik A, Žumer S. Forces in an inhomogeneously ordered nematic liquid crystal: Stable and metastable states. Phys Rev E. 1997;56(3):3021–3027. doi: 10.1103/PhysRevE.56.3021
  • Kocevar K, Musevic I. Forces in the isotropic phase of a confined nematic liquid crystal 5CB. Phys Rev E. 2001;64(5 Pt 1):051711. doi: 10.1103/PhysRevE.64.051711
  • Horn RG, Israelachvili JN, Perez E. Forces due to structure in a thin liquid crystal film. J Phys France. 1981;42(1):39–52. doi: 10.1051/jphys:0198100420103900
  • Mitchell DJ, Ninham BW, Pailthorpe BA. Solvent structure in particle interactions. Part 1.—The asymptotic regime. J Chem Soc Faraday Trans 2. 1978;74:1098. doi: 10.1039/F29787401098
  • Mitchell DJ, Ninham BW, Pailthorpe BA. Solvent structure in particle interactions. Part 2.—Forces at short range. J Chem Soc Faraday Trans 2. 1978;74:1116. doi: 10.1039/F29787401116
  • Van Megen W, Snook I. Solvent structure and solvation forces between solid bodies. J Chem Soc Faraday Trans. 1979;75(8):1095. doi: 10.1039/f29797501095
  • Horn RG, Israelachvili JN. Direct measurement of forces due to solvent structure. Chem Phys Lett. 1980;71(2):192–194. doi: 10.1016/0009-2614(80)80144-8
  • Kočevar K, Blinc R, Muševič I. Atomic force microscope evidence for the existence of smectic like surface layers in the isotropic phase of a nematic liquid crystal. Phys Rev E. 2000;62(3):R3055–R3058. doi: 10.1103/PhysRevE.62.R3055
  • Moreau L, Richetti P, Barois P. Direct measurement of the interaction between two ordering surfaces confining a presmectic film. Phys Rev Lett. 1994;73(26):3556–3559. doi: 10.1103/PhysRevLett.73.3556
  • Richetti P, Moreau L, Barois P, et al. Measurement of the interactions between two ordering surfaces under symmetric and asymmetric boundary conditions. Phys Rev E. 1996;54(2):1749–1762. doi: 10.1103/PhysRevE.54.1749
  • Alves VM, Nakamatsu S, Oliveira EA, et al. Anisotropic Reversible aggregation of latex nanoparticles suspended in a lyotropic nematic liquid crystal: Effect of gradients of biaxial order. Langmuir. 2009;25(19):11849–11856. doi: 10.1021/la901520r
  • Pershan PS, Als-Nielsen J. X-Ray reflectivity from the surface of a liquid crystal: Surface structure and absolute value of critical fluctuations. Phys Rev Lett. 1984;52(9):759–762. doi: 10.1103/PhysRevLett.52.759
  • Kitaev V, Kumacheva E. Thin films of liquid crystals confined between crystalline surfaces. J Phys Chem B. 2000;104(37):8822–8829.
  • De Gennes PG. Interactions between solid surfaces in a presmectic fluid. Langmuir. 1990;6(9):1448–1450. doi: 10.1021/la00099a003
  • Kocevar K, Borstnik A, Musevic I, et al. Capillary condensation of a nematic liquid crystal observed by force spectroscopy. Phys Rev Lett. 2001;86(26 Pt 1):5914–5917. doi: 10.1103/PhysRevLett.86.5914
  • Borstnik Bracic A, Kocevar K, Musevic I, et al. Capillary forces in a confined isotropic-nematic liquid crystal. Phys Rev E. 2003;68(1):011708. doi: 10.1103/PhysRevE.68.011708
  • Kočevar K, Muševič I. Structural forces in liquid crystals. Liq Cryst Today. 2003;12(3):3–8. doi: 10.1080/14645180310001624671
  • Antelmi DA, Kékicheff P, Richetti P. The confinement-induced sponge to lamellar phase transition. Langmuir. 1999;15(22):7774–7788. doi: 10.1021/la9903191
  • Rapini A, Papoular M. Distorsion d’une lamelle nématique sous champ magnétique conditions d’ancrage aux parois. J Phys Coll. 1969;30(C4):C4–54–C4–56. doi: 10.1051/jphyscol:1969413
  • Ruths M, Zappone B. Direct nanomechanical measurement of an anchoring transition in a nematic liquid crystal subject to hybrid anchoring conditions. Langmuir. 2012;28(22):8371–8383. doi: 10.1021/la204746d
  • Toyooka T, Chen G-P, Takezoe H, et al. Determination of twist elastic constant K22 in 5CB by four independent light-scattering techniques. Jpn J Appl Phys. 1987;26(12R):1959. doi: 10.1143/JJAP.26.1959
  • Sonnet AM, Gruhn T. On the origin of repulsive forces of nematic liquid-crystalline films in the surface forces apparatus. J Phys. 1999;11(41):8005. doi: 10.1088/0953-8984/11/41/305
  • Kocevar K, Musevic I. Observation of an electrostatic force between charged surfaces in liquid crystals. Phys Rev E. 2002;65(3):030703. doi: 10.1103/PhysRevE.65.030703
  • Škarabot M, Muševič I. Atomic force microscope force spectroscopy study of the electric double layer at a liquid crystal interface. J Appl Phys. 2009;105(1):014905. doi: 10.1063/1.3043573
  • Carbone G, Lombardo G, Barberi R, et al. Mechanically induced biaxial transition in a nanoconfined nematic liquid crystal with a topological defect. Phys Rev Lett. 2009;103(16):167801. doi: 10.1103/PhysRevLett.103.167801
  • Barbero G, Barberi R. Critical thickness of a hybrid aligned nematic liquid crystal cell. J Phys France. 1983;44(5):609–616. doi: 10.1051/jphys:01983004405060900
  • Hochbaum A, Labes MM. Alignment and texture of thin liquid crystal films on solid substrates. J Appl Phys. 1982;53(4):2998–3002. doi: 10.1063/1.331040
  • Proust JE, Ter-Minassian-Saraga L. Films minces de cristaux liquides. J Phys Colloques. 1979;40(C3):C3–490–496. doi: 10.1051/jphyscol:1979398
  • Barbero G, Madhusudana NV, Durand G. Weak anchoring energy and pretilt of a nematic liquid crystal. J Phys Lett-Paris. 1984;45(12):613–619. doi: 10.1051/jphyslet:019840045012061300
  • Wittebrood MM, Rasing T, Stallinga S, et al. Confinement effects on the collective excitations in thin nematic films. Phys Rev Lett. 1998;80(6):1232–1235. doi: 10.1103/PhysRevLett.80.1232
  • Schopohl N, Sluckin TJ. Defect core structure in nematic liquid crystals. Phys Rev Lett. 1987;59(22):2582–2584. doi: 10.1103/PhysRevLett.59.2582
  • Palffymuhoray P, Gartland EC, Kelly JR. A new configurational transition in inhomogeneous nematics. Liq Cryst. 1994;16(4):713–718. doi: 10.1080/02678299408036543
  • Galabova HG, Kothekar N, Allender DW. Stable configurations in hybrid nematic cells in relation to thickness and surface order. Liq Cryst. 1997;23(6):803–811. doi: 10.1080/026782997207731
  • Sarlah A, Zumer S. Equilibrium structures and pretransitional fluctuations in a very thin hybrid nematic film. Phys Rev E. 1999;60(2):1821–1830. doi: 10.1103/PhysRevE.60.1821
  • Ziherl P, Podgornik R, Zumer S. Pseudo-Casimir structural force drives spinodal dewetting in nematic liquid crystals. Phys Rev Lett. 2000;84(6):1228–1231. doi: 10.1103/PhysRevLett.84.1228
  • Chiccoli C, Pasini P, Sarlah A, et al. Structures and transitions in thin hybrid nematic films: a Monte Carlo study. Phys Rev E. 2003;67(5):050703. doi: 10.1103/PhysRevE.67.050703
  • Proust JE, Ter-Minassian-Saraga L. Structure, free energy of adhesion and disjoining pressure in a solid-nematic thermotrope system. Colloid Polym Sci. 1976;254(5):492–496. doi: 10.1007/BF01410916
  • Bisi F, Gartland EC Jr., Rosso R, et al. Order reconstruction in frustrated nematic twist cells. Phys Rev E. 2003;68(2 Pt 1):021707. doi: 10.1103/PhysRevE.68.021707
  • Bisi F, Virga EG, Durand GE. Nanomechanics of order reconstruction in nematic liquid crystals. Phys Rev E. 2004;70(4):042701. doi: 10.1103/PhysRevE.70.042701
  • Mirantsev LV, Virga EG. Molecular dynamics simulation of a nanoscopic nematic twist cell. Phys Rev E. 2007;76(2):021703. doi: 10.1103/PhysRevE.76.021703
  • Kekicheff P, Richetti P, Christenson HK. Structure and elastic properties of lamellar mesophases from direct force measurements. Langmuir. 1991;7(9):1874–1879. doi: 10.1021/la00057a010
  • Richetti P, Kekicheff P, Barois P. Measurement of the layer compressibility modulus of a lamellar mesophase with a surface forces apparatus. J Phys. 1995;5(8):1129–1154. doi: 10.1051/jp2:1995173
  • Carbone G, Zappone B, Barberi R, et al. Direct nanomechanical measurement of layer thickness and compressibility of smectic liquid crystals. Phys Rev E. 2011;83(5):051707. doi: 10.1103/PhysRevE.83.051707
  • Milette J, Relaix S, Lavigne C, et al. Reversible long-range patterning of gold nanoparticles by smectic liquid crystals. Soft Matter. 2012;8(24):6593–6598. doi: 10.1039/c2sm25445j
  • Pershan PS, Prost J. Dislocation and impurity effects in smectic‐A liquid crystals. J Appl Phys. 1975;46(6):2343–2353. doi: 10.1063/1.321912
  • Meyer RB, Stebler B, Lagerwall ST. Observation of edge dislocations in smectic liquid crystals. Phys Rev Lett. 1978;41(20):1393–1395. doi: 10.1103/PhysRevLett.41.1393
  • Oswald P, Milette J, Relaix S, et al. Alloy hardening of a smectic a liquid crystal doped with gold nanoparticles. Europhys Lett. 2013;103(4):46004. doi: 10.1209/0295-5075/103/46004
  • Litster JD, Als-Nielsen J, Birgeneau RJ, et al. High resolution x-ray and light scattering studies of bilayer smectic a compounds. J Phys Colloques. 1979;40(4):339–340. doi: 10.1051/jphyscol:1979366
  • Roux D, Safinya CR. A synchrotron X-ray study of competing undulation and electrostatic interlayer interactions in fluid multimembrane lyotropic phases. J Phys. 1988;49(2):307–318. doi: 10.1051/jphys:01988004902030700
  • Kelton K, Greer AL. Nucleation in condensed matter. Amsterdam, The Netherlands: Pergamon; 2010.
  • Radzihovsky L, Lubensky TC. Nonlinear smectic elasticity of helical state in cholesteric liquid crystals and helimagnets. Phys Rev E. 2011;83(5):051701. doi: 10.1103/PhysRevE.83.051701
  • Pinkevich IP, Reshetnyak VY, Reznikov YA, et al. Influence of light-induced molecular conformational transformations and anchoring energy on cholesteric liquid crystal pitch and dielectric properties. Mol Cryst Liq Cryst. 1992;223(1):269–278. doi: 10.1080/15421409208048701
  • Zink H, Belyakov VA. Temperature hysteresis of the change in the cholesteric pitch and surface anchoring in thin planar layers. J Exp Theor Phys. 1997 08 01;85(2):285–291. doi: 10.1134/1.558276
  • Smalyukh II, Lavrentovich OD. Anchoring-mediated interaction of edge dislocations with bounding surfaces in confined cholesteric liquid crystals. Phys Rev Lett. 2003;90(8):085503. doi: 10.1103/PhysRevLett.90.085503
  • Kiselev AD, Sluckin TJ. Twist of cholesteric liquid crystal cells: stability of helical structures and anchoring energy effects. Phys Rev E. 2005;71(3):031704. doi: 10.1103/PhysRevE.71.031704
  • Lelidis I, Barbero G, Alexe-Ionescu AL. Cholesteric pitch transitions induced by mechanical strain. Phys Rev E. 2013;87(2):022503. doi: 10.1103/PhysRevE.87.022503
  • Smalyukh II, Lavrentovich OD. Three-dimensional director structures of defects in Grandjean-cano wedges of cholesteric liquid crystals studied by fluorescence confocal polarizing microscopy. Phys Rev E. 2002;66(5):051703. doi: 10.1103/PhysRevE.66.051703
  • Barbero G, Zheng W, Zappone B. Twist transitions and force generation in cholesteric liquid crystal films. J Mol Liq. 2018;267:242–248. doi: 10.1016/j.molliq.2017.11.014
  • Zheng W, Perez-Martinez CS, Petriashvili G, et al. Direct measurements of structural forces and twist transitions in cholesteric liquid crystal films with a surface force apparatus. Soft Matter. 2019;15(24):4905–4914. doi: 10.1039/C9SM00487D
  • Škarabot M, Lokar Ž, Gabrijelčič K, et al. Atomic force microscope based method of measuring short cholesteric pitch in liquid crystals. Liq Cryst. 2011;38(8):1017–1020. doi: 10.1080/02678292.2011.589912
  • Guyot-Sionnest P, Hsiung H, Shen YR. Surface polar ordering in a liquid crystal observed by optical second-harmonic generation. Phys Rev Lett. 1986;57(23):2963–2966. doi: 10.1103/PhysRevLett.57.2963
  • Chen W, Feller MB, Shen YR. Investigation of anisotropic molecular orientational distributions of liquid-crystal monolayers by optical second-harmonic generation. Phys Rev Lett. 1989;63(24):2665–2668. doi: 10.1103/PhysRevLett.63.2665
  • Blinov LM, Chigrinov VG. Electrooptic effects in liquid crystal materials. New York, (NY) (USA): Springer; 1994.
  • Cho Y-K, Granick S. A surface forces platform for dielectric measurements. J Chem Phys. 2003;119(1):547–554. doi: 10.1063/1.1568931
  • Valtiner M, Banquy X, Kristiansen K, et al. The electrochemical surface forces apparatus: the effect of surface roughness, electrostatic surface potentials, and anodic oxide growth on interaction forces, and friction between dissimilar surfaces in aqueous solutions. Langmuir. 2012;28(36):13080–13093. doi: 10.1021/la3018216
  • Drummond C. Electric-field-induced friction reduction and control. Phys Rev Lett. 2012;109(15):154302. doi: 10.1103/PhysRevLett.109.154302
  • Nakano S, Mizukami M, Kurihara K. Effect of confinement on electric field induced orientation of a nematic liquid crystal. Soft Matter. 2014;10(13):2110–2115. doi: 10.1039/C3SM52744A
  • Kristiansen K, Zeng H, Zappone B, et al. Simultaneous measurements of molecular forces and electro-optical properties of a confined 5CB liquid crystal film using a surface forces apparatus. Langmuir. 2015;31(13):3965–3972. doi: 10.1021/acs.langmuir.5b00144
  • Perez-Martinez CS, Perkin S. Surface forces generated by the action of electric fields across liquid films. Soft Matter. 2019;15(21):4255–4265. doi: 10.1039/C9SM00143C

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.