101
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Liquid crystalline materials containing pyrimidine rings

ORCID Icon, , , , , , , ORCID Icon & show all
Received 25 Mar 2024, Accepted 25 May 2024, Published online: 06 Jun 2024

References

  • Geelhaar T, Griesar K, Reckmann B. 125 Years of liquid crystals—A scientific revolution in the home. Angew Chem Int Ed. 2013;52(34):8798–8809. doi: 10.1002/anie.201301457
  • Schadt M. Nematic liquid crystals and twisted-nematic LCDs. Liq Cryst. 2015;42:646–652. doi: 10.1080/02678292.2015.1021597
  • Reinitzer F. Beiträge zur Kenntniss des Cholesterins. Monatshefte für Chemie und verwandte Teile anderer Wissenschaften. Monatshefte für Chemie - Chemical Monthly. 1888;9(1):421–441. doi: 10.1007/BF01516710
  • Reinitzer F. Contributions to the knowledge of cholesterol. Liq Cryst. 1989;5(1):7–18. doi: 10.1080/02678298908026349
  • Yang DK, Wu ST. Fundamentals of liquid crystal devices. 2nd ed. West Sussex (UK): John Wiley & Sons; 2014.
  • Hu G, Kitney SP, Bao W, et al. Novel heterocyclic liquid crystalline semiconductors with polymorphism. Phase Transit. 2020;93(12):1143–1156. doi: 10.1080/01411594.2020.1845677
  • Hu G, Kitney SP, Harrison W, et al. Synthesis and mesomorphic behaviour of highly ordered liquid crystalline D-A-D-type carbazole-TPD-Carbazole. Phase Transit. 2020;93(8):759–772. doi: 10.1080/01411594.2020.1775830
  • Vardar D, Ocak H, Akdaş Kılıç H, et al. Synthesis and characterization of new pyridine-based chiral calamitic liquid crystals. Liq Cryst. 2021;48(6):850–861. doi: 10.1080/02678292.2020.1825841
  • Bremer M. Liquid crystals based on 2- fluoropyrimidine and -pyridine: synthesis, dielectric anisotropy and phase behavior*. Adv Mater. 1995;7(9):803–807. doi: 10.1002/adma.19950070910
  • Upadhyay P, Rastogi MK, Kumar D. Polarizability study of nematic liquid crystal 4-cyano-4′-pentylbiphenyl (5CB) and its nitrogen derivatives. Chem Phys. 2015;456:41–46. doi: 10.1016/j.chemphys.2015.03.011
  • Schilling C, Bauer A, Knöller JA, et al. Tailoring boron liquid crystals: mesomorphic properties of iminodiacetic acid boronates. J Mol Liq. 2022;367:120519. doi: 10.1016/j.molliq.2022.120519
  • Chien C-W, Liu K-T, Lai CK. Heterocyclic columnar pyrimidines: synthesis, characterization and mesomorphic properties. Liq Cryst. 2004;31(7):1007–1017. doi: 10.1080/02678290410001713342
  • Lin Y-C, Lai CK, Chang Y-C, et al. Formation of hexagonal columnar phases by heterocyclic pyrimidine derivatives. Liq Cryst. 2002;29(2):237–242. doi: 10.1080/02678290110097800
  • Majumdar KC, Mondal S, Pal N, et al. Synthesis and mesomorphic behaviour of new mesogenic compounds possessing a cholesteryl ester moiety connected to a pyrimidine core. Tetrahedron Lett. 2009;50(17):1992–1995. doi: 10.1016/j.tetlet.2009.02.065
  • Majumdar KC, Ghosh T. Synthesis and mesomorphic behavior of novel calamitic liquid crystalline dimesogens possessing a cholesteryl moiety connected to a pyrimidine core. Mol Cryst Liq Cryst. 2013;577(1):15–24. doi: 10.1080/15421406.2013.779180
  • Nishiyama I, Tabe Y, Yamamoto J, et al. Pre-organization effects on chirality, polarity and biaxiality in liquid crystals: novel laterally connected mesogens showing anomalous properties. Mol Cryst Liq Cryst. 2011;549(1):174–183. doi: 10.1080/15421406.2011.581528
  • Akdas-Kilig H, Godfroy M, Fillaut J-L, et al. Mesogenic, luminescence, and nonlinear optical properties of New Bipyrimidine-based multifunctional octupoles. J Phys Chem C. 2015;119(7):3697–3710. doi: 10.1021/jp511486y
  • Barszcz B, Bogucki A, Świetlik R, et al. Conformational studies of bipyrimidine-based mesogens by combination of DFT calculations and temperature-dependent infrared studies. Liq Cryst. 2019;46(9):1403–1414. doi: 10.1080/02678292.2019.1575990
  • Czerwiński M, Gaładyk K, Morawiak P, et al. Pyrimidine-based ferroelectric mixtures – the influence of oligophenyl based chiral doping system. J Mol Liq. 2020;303:112693. doi: 10.1016/j.molliq.2020.112693
  • Lapanik V, Lugovski A, Timofeev S. A new generation of ferroelectric liquid crystals with homogeneous and shock-stable orientation. Liq Cryst. 2023;50(2):203–209. doi: 10.1080/02678292.2022.2110956
  • Hird M. Ferroelectricity in liquid crystals—materials, properties and applications. Liq Cryst. 2011;38(11–12):1467–1493. doi: 10.1080/02678292.2011.625126
  • Yuan H, Li M-Y, Chen C-N, et al. Substituent effects on the UV absorption energy of 2,5-disubstituted pyrimidines. J Phys Org Chem. 2018;31(10):e3860. doi: 10.1002/poc.3860
  • Komatsu R, Sasabe H, Kido J. Recent progress of pyrimidine derivatives for high-performance organic light-emitting devices. J Photonics Energy. 2018;8(3):032108–032108. doi: 10.1117/1.JPE.8.032108
  • Yoon J, Lee C, Park SH, et al. Pyrimidine-based bipolar host materials for high efficiency solution processed green thermally activated delayed fluorescence OLEDs. J Mater Chem C. 2020;8(6):2196–2204. doi: 10.1039/C9TC05727G
  • Zhen Y, Zhang F, Liu H, et al. Impact of peripheral groups on pyrimidine acceptor-based HLCT materials for efficient deep blue OLED devices. J Mater Chem C. 2022;10(27):9953–9960. doi: 10.1039/D2TC01766K
  • Li B, Li Z, Song X, et al. Pyrimidine-based thermally activated delayed fluorescent materials with unique asymmetry for highly-efficient organic light-emitting diodes. Dyes Pigm. 2022;203:110373. doi: 10.1016/j.dyepig.2022.110373
  • Chen H-W, Lee J-H, Lin B-Y, et al. Liquid crystal display and organic light-emitting diode display: present status and future perspectives. Light: Sci Appl. 2018;7(3):17168–17168. doi: 10.1038/lsa.2017.168
  • Huang Y, Hsiang E-L, Deng M-Y, et al. Mini-LED, micro-LED and OLED displays: present status and future perspectives. Light: Sci Appl. 2020;9(1):105. doi: 10.1038/s41377-020-0341-9
  • Venkateswararao A, Wong K-T. Small molecules for vacuum-processed organic photovoltaics: past, Current status, and Prospect. Bull Chem Soc Jpn. 2021;94(3):812–838. doi: 10.1246/bcsj.20200330
  • Kim J, Lee J, Chae S, et al. Conjugated polymers containing pyrimidine with electron withdrawing substituents for organic photovoltaics with high open-circuit voltage. Polymer. 2016;83:50–58. doi: 10.1016/j.polymer.2015.12.017
  • El Aslaoui Z, Karzazi Y. Theoretical investigation of new pyrimidines π-conjugated based materials for photovoltaic applications. J Mater Environ Sci. 2017;8:1291–1300. https://www.jmaterenvironsci.com/Document/vol8/vol8_N4/137-JMES-El%20aslaoui.pdf
  • Kojima T, J-I N, Tokito S, et al. New n-type field-effect transistors based on pyrimidine-containing compounds with (Trifluoromethyl)phenyl groups. Chem Lett. 2009;38(5):428–429. doi: 10.1246/cl.2009.428
  • Shamoon Ahmad S, Abdullah MM. DFT modeling of 4,6-Di(2-furyl)pyrimidine derivatives as efficient charge transfer materials. Russ J Phys Chem. 2018;92(10):1996–2002. doi: 10.1134/S003602441810031X
  • Karmegam V, Udamulle Gedara CM, Biewer MC, et al. Synthesis and opto-electronic properties of functionalized pyrimidine-based conjugated polymers. J Polym Sci Part A. 2018;56(22):2547–2553. doi: 10.1002/pola.29234
  • Pandidurai J, Jayakumar J, Chen Y-K, et al. Constitutional isomers of carbazole–benzoyl-pyrimidine-based thermally activated delayed fluorescence emitters for efficient OLEDs. J Mater Chem C. 2021;9(44):15900–15909. doi: 10.1039/D1TC03998A
  • Li Y, Yao J, Wang C, et al. Highly efficient deep-red/near-infrared D-A chromophores based on naphthothiadiazole for OLEDs applications. Dyes Pigm. 2020;173:107960. doi: 10.1016/j.dyepig.2019.107960
  • Fu C, Sun W, Zhao Y, et al. Facile access to high-performance reverse intersystem crossing OLED materials through an unsymmetrical D-A-D’ molecular scaffold. Chem Eng J. 2022;450:137989. doi: 10.1016/j.cej.2022.137989
  • Duan L, Qiao J, Sun Y, et al. Strategies to design bipolar small molecules for OLEDs: donor-acceptor structure and non-donor-acceptor structure. Adv Mater. 2011;23(9):1137–1144. doi: 10.1002/adma.201003816
  • Trivedi HD, Joshi VB, Patel BY. Pyrazole bearing pyrimidine analogues as the privileged scaffolds in antimicrobial drug discovery: a Review. Anal Chem Lett. 2022;12(2):147–173. doi: 10.1080/22297928.2021.1910565
  • Tiwari SV, Sarkate AP, Lokwani DK, et al. Explorations of novel pyridine-pyrimidine hybrid phosphonate derivatives as aurora kinase inhibitors. Bioorg Med Chem Lett. 2022;67:128747. doi: 10.1016/j.bmcl.2022.128747
  • Oukoloff K, Lucero B, Francisco KR, et al. 1,2,4-Triazolo[1,5-a]pyrimidines in drug design. Eur J Med Chem. 2019;165:332–346. doi: 10.1016/j.ejmech.2019.01.027
  • Zhan X, Liu Y, Yang K-L, et al. State-of-the-Art Development in Liquid Crystal Biochemical Sensors. Biosensors (Basel). 2022;12(8):577. doi: 10.3390/bios12080577
  • Bisoyi HK, Li Q. Liquid crystals: versatile self-organized smart soft materials. Chem Rev. 2022;122(5):4887–4926. doi: 10.1021/acs.chemrev.1c00761
  • Popov N, Honaker LW, Popova M, et al. Thermotropic Liquid Crystal-assisted chemical and biological sensors. Materials. 2018;11(1):20. doi: 10.3390/ma11010020
  • Rahman ML, Hegde G, Yusoff MM, et al. New pyrimidine-based photo-switchable bent-core liquid crystals. New J Chem. 2013;37(8):2460–2467. doi: 10.1039/C3NJ00359K
  • Huang Y, Bisoyi HK, Huang S, et al. Bioinspired synergistic photochromic luminescence and programmable liquid crystal actuators. Angew Chem Int Ed. 2021;60(20):11247–11251. doi: 10.1002/anie.202101881
  • Luo M, Liu Y, Zhao J, et al. Magic tetraphenylethene Schiff base derivatives with AIE, liquid crystalline and photochromic properties. Dyes Pigm. 2022;202:110222. doi: 10.1016/j.dyepig.2022.110222
  • Han MJ, Lee D-W, Lee EK, et al. Molecular orientation control of liquid crystal organic semiconductor for high-performance organic field-effect transistors. ACS Appl Mater Interfaces. 2021;13(9):11125–11133. doi: 10.1021/acsami.0c22393
  • Suleymanova AF, Shafikov MZ, Chen X, et al. Construction and performance of OLED devices prepared from liquid-crystalline TADF materials. Phys Chem Chem Phys. 2022;24(36):22115–22121. doi: 10.1039/D2CP02684H
  • Chen HY, Hu DQ, Yang QG, et al. All-small-molecule organic solar cells with an ordered liquid crystalline donor. Joule. 2019;3(12):3034–3047. doi: 10.1016/j.joule.2019.09.009
  • Hu G, Zhang B, Kelly SM, et al. Photopolymerisable liquid crystals for additive manufacturing. Addit. Manuf. 2022;55:102861. doi: 10.1016/j.addma.2022.102861
  • Liao W, Yang Z. 3D printing programmable liquid crystal elastomer soft pneumatic actuators. Mater Horiz. 2023;10(2):576–584. doi: 10.1039/D2MH01001A
  • Del Pozo M, Jahp S, Aphj S, et al. 4D Printing of liquid crystals: what’s right for me? Advanced Materials. 2022;34(3):2104390. doi: 10.1002/adma.202104390
  • Ula SW, Traugutt NA, Volpe RH, et al. Liquid crystal elastomers: an introduction and review of emerging technologies. Liq Cryst Rev. 2018;6(1):78–107. doi: 10.1080/21680396.2018.1530155
  • Ryu M, Cang Y, Wang Z, et al. Temperature-dependent thermoelastic anisotropy of the phenyl pyrimidine liquid crystal. J Phys Chem C. 2019;123(28):17148–17154. doi: 10.1021/acs.jpcc.9b04270
  • Cang Y, Liu J, Ryu M, et al. On the origin of elasticity and heat conduction anisotropy of liquid crystal elastomers at gigahertz frequencies. Nat Commun. 2022;13(1):5248. doi: 10.1038/s41467-022-32865-1
  • Petrov VF. Pyrimidine as a structural fragment in calamitic liquid crystals. Mol Cryst Liq Cryst. 2006;457(1):121–149. doi: 10.1080/15421400600598545
  • Achelle S, Plé N. Pyrimidine ring as building block for the synthesis of functionalized II-conjugated materials. Curr Org Synth. 2012;9(2):163–187. doi: 10.2174/157017912799829067
  • Ghosh T, Lehmann M. Recent advances in heterocycle-based metal-free calamitics. J Mater Chem C. 2017;5(47):12308–12337. doi: 10.1039/C7TC03502K
  • Swaminathan V, Panov VP, Panov A, et al. Design and electro-optic investigations of de vries chiral smectic liquid crystals for exhibiting broad temperature ranges of SmA* and SmC* phases and fast electro-optic switching. J Mater Chem C. 2020;8(14):4859–4868. doi: 10.1039/C9TC04405A
  • Gupta SK, Budaszewski D, Singh DP. Ferroelectric liquid crystals: futuristic mesogens for photonic applications. Eur Phys J Spec Top. 2022;231(4):673–694. doi: 10.1140/epjs/s11734-021-00390-9
  • Zhao Y, Pan S, Li Y, et al. High contrast ratio and fast response ferroelectric liquid crystal displays based on alignment optimization. Opt Mater. 2023;143:114257. doi: 10.1016/j.optmat.2023.114257
  • Meyer RB, Liebert L, Strzelecki L, et al. FERROELECTRIC LIQUID-CRYSTALS. J Phys Lett. 1975;36(3):69–71. doi: 10.1051/iphyslet:0197500360306900
  • Clark NA, Lagerwall ST. SUBMICROSECOND BISTABLE ELECTRO-OPTIC SWITCHING in LIQUID-CRYSTALS. Appl Phys Lett. 1980;36(11):899–901. doi: 10.1063/1.91359
  • Thompson M, Carkner C, Bailey A, et al. Tuning the mesogenic properties of 5-alkoxy-2-(4-alkoxyphenyl)pyrimidine liquid crystals: the effect of a phenoxy end-group in two sterically equivalent series. Liq Cryst. 2014;41(9):1246–1260. doi: 10.1080/02678292.2014.913721
  • Patari S, Chakraborty S, Nath A. The optical anisotropy and orientational order parameter of two mesogens having slightly different flexible side chain – a comparative study. Liq Cryst. 2016;43(8):1017–1027. doi: 10.1080/02678292.2016.1155767
  • Tykarska M, Dąbrowski R, Czerwiński M, et al. The influence of the chiral terphenylate on the tilt angle in pyrimidine ferroelectric mixtures. Phase Transit. 2012;85(4):364–370. doi: 10.1080/01411594.2011.646274
  • Pramanik A, Das MK, Das B, et al. Preparation and study of the electro-optical properties of binary mixtures of orthoconic anti-ferroelectric Esters and achiral phenyl pyrimidine liquid crystal. Soft Mater. 2015;13(4):201–209. doi: 10.1080/1539445X.2015.1063510
  • Roberts JC, Kapernaum N, Giesselmann F, et al. Design of liquid crystals with “de vries-like” properties: organosiloxane Mesogen with a 5-Phenylpyrimidine Core. J Am Chem Soc. 2008;130(42):13842–13843. doi: 10.1021/ja805672q
  • Radcliffe MD, Brostrom ML, Epstein KA, et al. Smectic a and C materials with novel director tilt and layer thickness behaviour. Liq Cryst. 1999;26(6):789–794. doi: 10.1080/026782999204471
  • Rieker TP, Janulis EP. Enhanced thermal response of the SAd1 layer thickness in highly fluorinated thermotropic liquid crystals. Liq Cryst. 1994;17(5):681–687. doi: 10.1080/02678299408037339
  • Romero-Hasler PN, Kurihara LK, Mair LO, et al. Nanocomposites of ferroelectric liquid crystals and FeCo nanoparticles: towards a magnetic response via the application of a small electric field. Liq Cryst. 2020;47(2):169–178. doi: 10.1080/02678292.2019.1633429
  • Khan S, Chauhan S, Chandran A, et al. Enhancement of dielectric and electro-optical parameters of a newly prepared ferroelectric liquid crystal mixture by dispersing nano-sized copper oxide. Liq Cryst. 2020;47(2):263–272. doi: 10.1080/02678292.2019.1643506
  • Debnath A, Mandal PK, Sarma A, et al. Effect of non-mesogenic chiral terphenylate on the formulation of room temperature ferroelectric liquid crystal mixtures suitable for display applications. J Mol Liq. 2019;292:111317. doi: 10.1016/j.molliq.2019.111317
  • Chakraborty A, Chakraborty S, Kumar Das M. Critical behavior at the isotropic to nematic, nematic to smectic-A and smectic-A to smectic-C phase transitions in a pyrimidine liquid crystal compound. Physica B. 2015;479:90–95. doi: 10.1016/j.physb.2015.09.039
  • Pozhidaev E, Torgova S, Barbashov V, et al. Development of ferroelectric liquid crystals with low birefringence. Liq Cryst. 2019;46(6):941–951. doi: 10.1080/02678292.2018.1542749
  • Wand MD, Thurmes WN, Vohra RT, et al. New chiral dopants based on the 2-Fluoro-2-methylalkoxy tail for use in ferroelectric liquid crystal mixtures. Mol Cryst Liq Cryst. 1995;263(1):217–222. doi: 10.1080/10587259508033586
  • Gaładyk K, Piecek W, Czerwiński M, et al. An effect of chiral dopants on mesomorphic and electro-optical properties of ferroelectric smectic mixture. Liq Cryst. 2019;46(15):2134–2148. doi: 10.1080/02678292.2019.1613689
  • Sreenilayam SP, Rodriguez-Lojo D, Panov VP, et al. Design and investigation of de vries liquid crystals based on 5-phenyl-pyrimidine and (RR)-2,3-epoxyhexoxy backbone. Phys Rev E. 2017;96(4):042701. doi: 10.1103/PhysRevE.96.042701
  • Swaminathan V, Panov VP, Kocot A, et al. Molecular orientational distribution function of a chiral de vries smectic liquid crystal from birefringence measurements. J Chem Phys. 2019;150(8):084901. doi: 10.1063/1.5080222
  • Sreenilayam SP, Rodriguez-Lojo D, Agra-Kooijman DM, et al. de Vries liquid crystals based on a chiral 5-phenylpyrimidine benzoate core with a tri- and tetra-carbosilane backbone. Phys Rev Mater. 2018;2(2):025603. doi: 10.1103/PhysRevMaterials.2.025603
  • Schubert CPJ, Müller C, Bogner A, et al. Design of liquid crystals with ‘de vries-like’ properties: structural variants of carbosilane-terminated 5-phenylpyrimidine mesogens. Soft Matter. 2017;13(18):3307–3313. doi: 10.1039/C7SM00355B
  • Furue H, Furutani M, Ito A, et al. Alignment structure of dimeric liquid crystal molecules having bent molecular structure. Ferroelectrics. 2010;394(1):22–31. doi: 10.1080/00150191003677569
  • Kashima S, Takanishi Y, Yamamoto J, et al. Flexible taper-shaped liquid crystal trimer exhibiting a modulated smectic phase. Liq Cryst. 2014;41(12):1752–1761. doi: 10.1080/02678292.2014.950353
  • Roberts JC, Kapernaum N, Song Q, et al. Design of liquid crystals with “de vries-like” properties: frustration between SmA- and SmC-promoting elements. J Am Chem Soc. 2010;132(1):364–370. doi: 10.1021/ja9087727
  • Song Q, Nonnenmacher D, Giesselmann F, et al. Tuning the frustration between SmA- and SmC-promoting elements in liquid crystals with ‘de vries-like’ properties. Chem Commun. 2011;47(16):4781–4783. doi: 10.1039/C1CC10344J
  • Rupar I, Mulligan KM, Roberts JC, et al. Elucidating the smectic A-promoting effect of halogen end-groups in calamitic liquid crystals. J Mater Chem C. 2013;1(23):3729–3735. doi: 10.1039/C3TC30534A
  • Roberts JC, Kapernaum N, Giesselmann F, et al. Fast switching organosiloxane ferroelectric liquid crystals. J Mater Chem. 2008;18(43):5301–5306. doi: 10.1039/B810209K
  • Schubert CPJ, Bogner A, Porada JH, et al. Design of liquid crystals with ‘de vries-like’ properties: carbosilane-terminated 5-phenylpyrimidine mesogens suitable for chevron-free FLC formulations. J Mater Chem C. 2014;2(23):4581–4589. doi: 10.1039/C4TC00393D
  • Schubert CPJ, Müller C, Giesselmann F, et al. Chiral 5-phenylpyrimidine liquid crystals with ‘de vries-like’ properties: dependence of electroclinic effect and ferroelectric properties on carbosilane nanosegregation. J Mater Chem C. 2016;4(36):8483–8489. doi: 10.1039/C6TC03120J
  • Liu H, Nohira H. Influence of fluorination extent on liquid crystalline properties of semi-perfluorinated phenylpyrimidine ferroelectric liquid crystals. Liq Cryst. 1998;24(5):719–726. doi: 10.1080/026782998206830
  • Rieker TP, Janulis EP. Dimerlike smectic- a and - C phases in highly fluorinated thermotropic liquid crystals. Phys Rev E. 1995;52(3):2688–2691. doi: 10.1103/PhysRevE.52.2688
  • Poll K, Sims MT. Sub-layer rationale of anomalous layer-shrinkage from atomistic simulations of a fluorinated mesogen. Mater Adv. 2022;3(2):1212–1223. doi: 10.1039/D1MA00714A
  • Abhilash TK, Varghese H, Czerwiński M, et al. Probing the effect of chiral dopant fluorination on dielectric and electro-optical properties of the ferroelectric liquid crystalline mixture. J Mol Liq. 2021;341:117392. doi: 10.1016/j.molliq.2021.117392
  • Song Q, Nonnenmacher D, Giesselmann F, et al. Tuning ‘de vries-like’ properties in siloxane- and carbosilane-terminated smectic liquid crystals. J Mater Chem C. 2013;1(2):343–350. doi: 10.1039/C2TC00338D
  • Ahmed Z, Müller C, Johnston JJ, et al. Design of liquid crystals with ‘de vries-like’ properties: the effect of an ethynyl spacer in the core structure. Liq Cryst. 2019;46(6):896–904. doi: 10.1080/02678292.2018.1536810
  • Mulligan KM, Bogner A, Song Q, et al. Design of liquid crystals with ‘de vries-like’ properties: the effect of carbosilane nanosegregation in 5-phenyl-1,3,4-thiadiazole mesogens. J Mater Chem C. 2014;2(39):8270–8276. doi: 10.1039/C4TC01364F
  • Müller C, Schubert CPJ, Lemieux RP, et al. The influence of carbosilane nanosegregation on the Dynamics in ‘de vries-type’ liquid crystals. Chemphyschem. 2018;19(20):2703–2708. doi: 10.1002/cphc.201800537
  • Schubert CPJ, Müller C, Wand MD, et al. Electroclinic effect in a chiral carbosilane-terminated 5-phenylpyrimidine liquid crystal with ‘de vries-like’ properties. Chem Commun. 2015;51(63):12601–12604. doi: 10.1039/C5CC05212B
  • Lin P-T, Wu S-T, Chang C-Y, et al. UV stability of high birefirngence liquid crystals. Mol Cryst Liq Cryst. 2004;411(1):243–253. doi: 10.1080/15421400490435233
  • Yadav SP, Yadav K, Lahiri J, et al. Ferroelectric liquid crystal nanocomposites: recent development and future perspective. Liq Cryst Rev. 2018;6(2):143–169. doi: 10.1080/21680396.2019.1589400
  • Poryvai A, Šmahel M, Švecová M, et al. Chiral, magnetic, and photosensitive liquid crystalline nanocomposites based on multifunctional nanoparticles and achiral liquid crystals. ACS Nano. 2022;16(8):11833–11841. doi: 10.1021/acsnano.1c10594
  • Bukowczan A, Hebda E, Pielichowski K. The influence of nanoparticles on phase formation and stability of liquid crystals and liquid crystalline polymers. J Mol Liq. 2021;321:114849. doi: 10.1016/j.molliq.2020.114849
  • Kumar A, Priyam, Meena H, et al. Recent advances on semiconducting nanomaterials–ferroelectric liquid crystals nanocomposites. J Phys Condens Mat. 2022;34(1):013004. doi: 10.1088/1361-648X/ac2ace
  • McDonald R, Lacey D, Watson P, et al. Synthesis and evaluation of some novel chiral heterocyclic liquid crystalline materials exhibiting ferro‐ and antiferro‐electric phases. Liq Cryst. 2005;32(3):319–330. doi: 10.1080/02678290500033711
  • Foo KL, Ha ST, Yeap GY. Synthesis and phase transition behavior of calamitic liquid crystals containing heterocyclic core and lateral ethoxy substituent. Phase Transit. 2022;95(2):178–192. doi: 10.1080/01411594.2021.2023745
  • Jian J, Hong F, Xia Z, et al. New fluorescent N-heterocyclic liquid crystals with high birefringence. J Mol Liq. 2016;224:909–913. doi: 10.1016/j.molliq.2016.10.071
  • Hu K, Weng Q, Chen R, et al. Benzoxazole-terminated liquid crystals with high birefringence and large dielectric anisotropy. Liq Cryst. 2020;47(9):1274–1280. doi: 10.1080/02678292.2019.1710777
  • Sharma S, Lacey D, Wilson P. The SYNTHESIS and THERMAL PROPERTIES of NOVEL HETEROCYCLIC LIQUID CRYSTALLINE MATERIALS. Mol Cryst Liq Cryst. 2003;401(1):111–121. doi: 10.1080/744815207
  • Sharma S, Lacey D, Wilson P. Synthesis and characterization of a range of heterocyclic liquid crystalline materials incorporating the novel thiophene-pyrimidine moiety. Liq Cryst. 2003;30(4):451–461. doi: 10.1080/0267829031000091138
  • Wilson P, Lacey D, Sharma S, et al. The synthesis and characterisation of novel thienyl-pyrimidine liquid crystalline materials. Mol Cryst Liq Cryst. 2001;368(1):279–292. doi: 10.1080/10587250108029957
  • Hori K, Matsunaga Y, Yoshizawa A, et al. Diversity in the packing modes of mesogenic diphenylpyrimidines with two chiral centres in their crystal structures: the role of interactions between the pyrimidine rings. Liq Cryst. 2004;31(6):759–766. doi: 10.1080/02678290410001697576
  • Mukherjee A, Bhattacharyya SS, Chaudhuri BK, et al. Dielectric spectroscopy of a dichiral mesogen with a unique phase sequence. Mol Cryst Liq Cryst. 2010;518(1):60–69. doi: 10.1080/15421400903568039
  • Maeda Y, Yokoyama H, Yoshizawa A, et al. Phase behaviour under pressure of a dichiral liquid crystal with an optically isotropic cubic phase: 2-{4-[(R)-2-fluorohexyloxy]phenyl}-5-{4-[(S)-2-fluoro-2-methyldecanoyloxy]phenyl}pyrimidine. Liq Cryst. 2007;34(1):9–18. doi: 10.1080/02678290600905412
  • Wong K-T, Hung TS, Lin Y, et al. Suzuki coupling approach for the synthesis of Phenylene−Pyrimidine alternating oligomers for blue light-emitting material. Org Lett. 2002;4(4):513–516. doi: 10.1021/ol017066z
  • Wong K-T, Lu Y-R, Liao Y-L. Synthesis and properties of pyrimidine-containing linear molecules. Tetrahedron Lett. 2001;42(36):6341–6344. doi: 10.1016/S0040-4039(01)01275-8
  • Wong K-T, Fang F-C, Cheng Y-M, et al. A new series of Pyrimidine-containing linear molecules: their elegant crystal structures and intriguing photophysical properties. J Org Chem. 2004;69(23):8038–8044. doi: 10.1021/jo048914h
  • Termine R, Golemme A. Charge mobility in discotic liquid crystals. Int J Mol Sci. 2021;22(2):877. doi: 10.3390/ims22020877
  • Wöhrle T, Wurzbach I, Kirres J, et al. Discotic liquid crystals. Chem Rev. 2016;116(3):1139–1241. doi: 10.1021/acs.chemrev.5b00190
  • Sergeyev S, Pisula W, Geerts YH. Discotic liquid crystals: a new generation of organic semiconductors. Chem Soc Rev. 2007;36(12):1902–1929. doi: 10.1039/B417320C
  • Wu H, Iino H, J-I H. Bilayered Crystalline Organic Semiconductors for Solution-processed OFETs: Asymmetrically-substituted Smectic Liquid Crystal of Benzo[1,2-b: 4,5-b′]dithiophene Derivatives. Derivatives Chem Lett. 2018;47(4):510–513. doi: 10.1246/cl.180066
  • Nikaido K, Inoue S, Kumai R, et al. Mixing-induced orientational ordering in liquid-crystalline organic semiconductors. Adv Mater Interfaces. 2022;9(35):2201789. doi: 10.1002/admi.202201789
  • Aldred MP, Carrasco‐Orozco M, Contoret AEA, et al. Organic electroluminescence using polymer networks from smectic liquid crystals. Liq Cryst. 2006;33(4):459–467. doi: 10.1080/02678290500487073
  • Hu G, Kelly SM, Kitney SP, et al. Novel nematic and glassy liquid crystalline oligomers as electroluminescent organic semiconductors. Liq Cryst. 2021;48(5):626–640. doi: 10.1080/02678292.2020.1800847
  • Hu G, Kitney SP, Billa MR, et al. A novel nematic tri-carbazole as a hole-transport material for solution-processed OLEDs. Liq Cryst. 2021;48(1):63–74. doi: 10.1080/02678292.2020.1765262
  • Hu G, Billa MR, Kitney SP, et al. Symmetrical carbazole–fluorene–carbazole nematic liquid crystals as electroluminescent organic semiconductors. Liq Cryst. 2018;45(7):965–979. doi: 10.1080/02678292.2017.1404156
  • Hu G, Kitney SP, Kelly SM, et al. Novel liquid crystalline organic semiconducting oligomers incorporating N-heterocyclic carbazole moieties for fluorescent OLEDs. Liq Cryst. 2017;44(11):1632–1645. doi: 10.1080/02678292.2017.1306633
  • Han MJ, Wei D, Kim YH, et al. Highly oriented liquid crystal semiconductor for organic field-effect transistors. ACS Cent Sci. 2018;4(11):1495–1502. doi: 10.1021/acscentsci.8b00465
  • Bushby RJ, O’Neill M, Kelly SM. Liquid crystalline semiconductors: materials, properties and applications. Dordrecht (Netherlands): Springer; 2013.
  • O’Neill M, Kelly SM. Ordered materials for organic electronics and photonics. Adv Mater. 2011;23(5):566–584. doi: 10.1002/adma.201002884
  • O’Neill M, Kelly SM. Liquid crystals for charge transport, luminescence, and photonics. Adv Mater. 2003;15(14):1135–1146. doi: 10.1002/adma.200300009
  • Tong F, Chen S, Chen Z, et al. Mesogen-co-polymerized transparent polyimide as a liquid-crystal alignment layer with enhanced anchoring energy. RSC Adv. 2018;8(20):11119–11126. doi: 10.1039/C8RA00479J
  • Wang A, Kawabata K, Goto H. Synthesis of isothianaphthene (ITN) and 3,4-Ethylenedioxy-thiophene (EDOT)-based low-bandgap liquid crystalline conjugated polymers. Materials. 2013;6(6):2218–2228. doi: 10.3390/ma6062218
  • Ito R, Goto H. Synthesis of aromatic liquid crystal π-conjugated copolymers bearing three-ring pyrimidine-based mesogens, and optical texture observations. Mol Cryst Liq Cryst. 2021;723(1):33–44. doi: 10.1080/15421406.2021.1897943
  • Kawabata K, Goto H. Liquid crystalline π-conjugated copolymers bearing a pyrimidine type mesogenic group. Materials. 2009;2(1):22–37. doi: 10.3390/ma2010022
  • Ohkawa S, Ohta R, Kawabata K, et al. Polymerization in liquid crystal medium: preparation of polythiophene derivatives bearing a bulky pyrimidine substituent. Polymers. 2010;2(4):393–406. doi: 10.3390/polym2040393
  • Otaki M, Kumai R, Sagayama H, et al. Synthesis of polyazobenzenes exhibiting photoisomerization and liquid crystallinity. Polymers. 2019;11(2):348. doi: 10.3390/polym11020348
  • Wang A, Kawabata K, Kawashima H, et al. Synthesis of a pyrimidine-based new chiral inducer for construction of cholesteric liquid crystal electrolyte solution and its electrochemical polymerization, and stimulated emission like interference. Polymer. 2013;54(15):3821–3827. doi: 10.1016/j.polymer.2013.04.053
  • Yin K, Hsiang E-L, Zou J, et al. Advanced liquid crystal devices for augmented reality and virtual reality displays: principles and applications. Light: Sci Appl. 2022;11(1):161. doi: 10.1038/s41377-022-00851-3
  • Liedtke A, O’Neill M, Wertmöller A, et al. White-light OLEDs using liquid crystal polymer networks. Chem Mater. 2008;20(11):3579–3586. doi: 10.1021/cm702925f
  • McCulloch I, Coelle M, Genevicius K, et al. Electrical properties of reactive liquid crystal semiconductors. Jpn J Appl Phys. 2008;47(1S):488. doi: 10.1143/JJAP.47.488
  • Aldred MP, Eastwood AJ, Kelly SM, et al. Light-emitting fluorene photoreactive liquid crystals for organic electroluminescence. Chem Mater. 2004;16(24):4928–4936. doi: 10.1021/cm0351893
  • Contoret AEA, Farrar SR, Jackson PO, et al. Polarized electroluminescence from an anisotropic nematic network on a non-contact photoalignment layer. Adv Mater. 2000;12(13):971–974. doi: 10.1002/1521-4095(200006)12:13<971:AID-ADMA971>3.0.CO;2-J
  • Rastogi P, Njuguna J, Kandasubramanian B. Exploration of elastomeric and polymeric liquid crystals with photothermal actuation: a review. Eur Polym J. 2019;121:109287. doi: 10.1016/j.eurpolymj.2019.109287
  • Ye Y, He R, Oh E, et al. Syntheses and properties of new smectic reactive mesogens and their application in guest-host polarizer. Macromol Res. 2020;28(10):910–918. doi: 10.1007/s13233-020-8121-1
  • Aldred MP, Vlachos P, Dong D, et al. Heterocyclic reactive mesogens: synthesis, characterisation and mesomorphic behaviour. Liq Cryst. 2005;32(8):951–965. doi: 10.1080/02678290500248400
  • Vlachos P, Kelly SM, Mansoor B, et al. Electron-transporting and photopolymerisable liquid crystals. Chem Commun. 2002;8(8):874–875. doi: 10.1039/B200526C
  • Hu G, Kitney SP, Kelly SM, et al. Polymer network hole transport layers based on photochemically cross-linkable N′N′-diallyl amide tri-N-substituted triazatruxene monomers. RSC Adv. 2018;8(16):8580–8585. doi: 10.1039/C8RA00830B
  • Kelly SM, Fünfschilling J, Villiger A. 2-(4-alkylphenyl)-5-(alkenyloxy)pyrimidines: synthesis, liquid crystal transition temperatures and some physical properties. Liq Cryst. 1994;16(5):813–829. doi: 10.1080/02678299408027852
  • Sultana NH, Kelly SM, Mansoor B, et al. Polycatenar oligophenylene liquid crystals. Liq Cryst. 2007;34(11):1307–1316. doi: 10.1080/02678290701682357
  • Kelly SM. Flat panel displays: advanced organic materials. Cambridge (UK): The Royal Society of Chemistry; 2000.
  • Patdiya J, Kandasubramanian B. Progress in 4D printing of stimuli responsive materials. Polym-Plast Tech Mat. 2021;60(17):1845–1883. doi: 10.1080/25740881.2021.1934016
  • Hu L, Zhang Q, Li X, et al. Stimuli-responsive polymers for sensing and actuation. Mater Horiz. 2019;6(9):1774–1793. doi: 10.1039/C9MH00490D
  • Xia X, Spadaccini CM, Greer JR. Responsive materials architected in space and time. Nat Rev Mater. 2022;7(9):683–701. doi: 10.1038/s41578-022-00450-z
  • Guan Z, Wang L, Bae J. Advances in 4D printing of liquid crystalline elastomers: materials, techniques, and applications. Mater Horiz. 2022;9(7):1825–1849. doi: 10.1039/D2MH00232A
  • Oladepo SA. Development and application of liquid crystals as stimuli-responsive sensors. Molecules. 2022;27(4):1453. doi: 10.3390/molecules27041453
  • Chen Y, Lu P, Li Z, et al. Dual stimuli-responsive high-efficiency circularly polarized luminescence from light-emitting chiral nematic liquid crystals. ACS Appl Mater Interfaces. 2020;12(50):56604–56614. doi: 10.1021/acsami.0c17241
  • Yu H, Szilvási T, Rai P, et al. Computational chemistry-guided design of selective chemoresponsive liquid crystals using pyridine and pyrimidine functional groups. Adv Funct Mater. 2018;28(13):1703581. doi: 10.1002/adfm.201703581
  • Nayani K, Yang Y, Yu H, et al. Areas of opportunity related to design of chemical and biological sensors based on liquid crystals. Liq Cryst Today. 2020;29(2):24–35. doi: 10.1080/1358314X.2020.1819624
  • Bao N, Gold JI, Szilvási T, et al. Designing chemically selective liquid crystalline materials that respond to oxidizing gases. J Mater Chem C. 2021;9(20):6507–6517. doi: 10.1039/D1TC00544H
  • Jindal G, Kaur N. Biologically significant pyrimidine appended optical sensors: An inclusive anthology of literature from 2005 to 2020. Coord Chem Rev. 2021;435:213798. doi: 10.1016/j.ccr.2021.213798
  • Datta S, Bhattacharya S. Differential response of cholesterol based pyrimidine systems with oxyethylene type spacers to gelation and mesogen formation in the presence of alkali metal ions. Soft Matter. 2015;11(10):1945–1953. doi: 10.1039/C4SM02792B
  • Hegmann T, Kain J, Diele S, et al. Molecular design at the calamitic/discotic cross-over point. Mononuclear ortho-metallated mesogens based on the combination of rod-like phenylpyrimidines and -pyridines with bent or half-disc-shaped diketonates. J Mater Chem. 2003;13(5):991–1003. doi: 10.1039/B210250A
  • Guang W, Han J, Wan W, et al. Synthesis and liquid crystal properties of dinuclear cyclopalladated 5-alkyl-2-(4′-alkoxyphenyl)pyrimidine and 3-(4′-alkoxyphenyl)-6-alkoxypyridazine complexes. Liq Cryst. 2003;30(11):1259–1264. doi: 10.1080/0267829031000154372
  • Ghedini M, Pucci D, De Munno G, et al. Transition metals complexed to ordered mesophases. Part 7. Synthesis, characterization and mesomorphic properties of binuclear cyclopalladated phenylpyrimidine species. Crystal structure of bis{(5-(1-hexyl)-2-[(4’-methoxy)phenyl-2’-ato]pyrimidine-N’,C2’)-.Mu.-acetato}dipalladium(II). Chem Mater. 1991;3:65–72. doi: 10.1021/cm00013a018
  • Ghedini M, Pucci D, Bartolino R, et al. X-ray investigations on the cyclopalladated mesogen bis-{5-(1-nonyl)-2{[4′1-nonyloxy)phenyl-2′-ato]}pyrimidine-N′,C2′]-μ-iodo}dipalladium(II). Liq Cryst. 1993;13(2):255–263. doi: 10.1080/02678299308026299

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.