130
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Advances in the preparation and application of liquid crystal microcapsules

, , , &
Received 07 May 2024, Accepted 03 Jun 2024, Published online: 18 Jun 2024

References

  • Hu G, Zhang B, Kelly SM, et al. Photopolymerisable liquid crystals for additive manufacturing. Additive Manuf. 2022;55:102861. doi: 10.1016/j.addma.2022.102861
  • Zhang Z, Yang X, Zhao Y, et al. Liquid crystal materials for biomedical applications. Adv Mater. 2023;35(36):2300220. doi: 10.1002/adma.202300220
  • Reinitzer F. Beiträge zur kenntniss des cholesterins. Monatshefte für Chemie und verwandte Teile anderer Wissenschaften. Monatsh Chem. 1888;9(1):421–441. doi: 10.1007/BF01516710
  • Mrad L, Zhao L, Español MI, et al. Aggregation phenomena in lyotropic chromonic liquid crystals. Commun Nonlinear Sci Numerical Simulation. 2023;120:107139. doi: 10.1016/j.cnsns.2023.107139
  • Kozenkov V, Belyaev V, Chausov D. Thin film polarizers: properties and technologies. Part 2: lyotropic LC and photoanisotropic materials. Opt Spectrosc. 2022;130(6):389–401. doi: 10.1134/S0030400X22070062
  • Liu X, Debije MG, Heuts JP, et al. Liquid‐crystalline polymer particles prepared by classical polymerization techniques. Chem–A Eur J. 2021;27(57):14168–14178. doi: 10.1002/chem.202102224
  • Li Y, Sun G, Zhang Y, et al. Flexoelectro-optic properties of liquid crystal dimer CB7CB in the uniform standing helix structure under planar anchoring boundary conditions. Mol Phys. 2023;121(3):e2168469. doi: 10.1080/00268976.2023.2168469
  • Zhang T, Liang F, Li X, et al. Novel benzoxazole-based liquid crystals with negative dielectric anisotropy and moderate optical anisotropy. Liq Cryst. 2023;50(15):2446–2457. doi: 10.1080/02678292.2023.2259843
  • Yao C, Tang J, Chen R, et al. Bis-tolane liquid crystals terminated by 2, 2-difluorovinyloxyl with high birefringence and large electrical anisotropy. J Mol Liq. 2023;375:121369. doi: 10.1016/j.molliq.2023.121369
  • Karaszi Z, Máthé M, Salamon P, et al. Lens-shaped nematic liquid crystal droplets with negative dielectric anisotropy in electric and magnetic fields. Liquid Crystals. 2023;50(3):393–402. doi: 10.1080/02678292.2022.2134594
  • Dasari VS, Kumar TA, Ramya E. Optical, dielectric and elastic studies of high birefringent ambient temperature nematic liquid crystal mixtures having similar molecular cores. Mater Today Proc. 2022;64:900–902. doi: 10.1016/j.matpr.2022.06.049
  • Qu D, Zussman E. Electric field‐driven control of cholesteric cellulose nanocrystal orientation and morphology. Adv Opt Mater. 2022;10(5):2101659. doi: 10.1002/adom.202101659
  • Chen M, Li Z, Liu T, et al. Spatial separation of azimuthally and radially polarized beams from non-polarized light waves based on the electrically controlled birefringence effect. Optics Lett. 2022;47(5):1069–1072. doi: 10.1364/OL.449318
  • Jin T, Yuan Y, Bagnani M, et al. Structural colors from amyloid‐based liquid crystals. Adv Mater. 2024;36(8):2308437. doi: 10.1002/adma.202308437
  • Koo J, Jang J, Kim M, et al. Molecular engineering for chiroptical smart paints: photo‐tunable and polymerizable helical nanostructures by cyanostilbene‐based reactive mesogens. Adv Opt Mater. 2023;11(6):2202707. doi: 10.1002/adom.202202707
  • Zaplotnik J, Mur U, Malkar D, et al. Photonic eigenmodes and transmittance of finite-length 1D cholesteric liquid crystal resonators. Sci Rep. 2023;13(1):16868. doi: 10.1038/s41598-023-43912-2
  • Kobashi J, Yoshida H, Ozaki M. Polychromatic optical vortex generation from patterned cholesteric liquid crystals. Phys Rev Lett. 2016;116(25):253903. doi: 10.1103/PhysRevLett.116.253903
  • Wang Y, Ma Z, Li Z, et al. Research on a novel temperature indicating device based on Bragg reflection waveguide of planar texture cholesteric liquid crystal layer. Mol Cryst Liq Cryst. 2022;739(1):78–87. doi: 10.1080/15421406.2022.2031447
  • Van Acker F, Lin B-H, Wang C-T, et al. Defect modes generated in a stack of spin-coated chiral liquid crystal layers. Crystals. 2024;14(3):231. doi: 10.3390/cryst14030231
  • Ma X, Han Y, Zhang Y-S, et al. Tunable templating of photonic microparticles via liquid crystal order-guided adsorption of amphiphilic polymers in emulsions. Nat Commun. 2024;15(1):1404. doi: 10.1038/s41467-024-45674-5
  • Bisoyi HK, Li Q. Liquid crystals: versatile self-organized smart soft materials. Chem Rev. 2021;122(5):4887–4926. doi: 10.1021/acs.chemrev.1c00761
  • Chen L, Li Y, Fan J, et al. Photoresponsive monodisperse cholesteric liquid crystalline microshells for tunable omnidirectional lasing enabled by a visible light-driven chiral molecular switch. Adv Opt Mater. 2014;2(9):845–848. doi: 10.1002/adom.201400166
  • Wang H, Bisoyi HK, McConney ME, et al. Visible‐light‐induced self‐organized helical superstructure in orientationally ordered fluids. Advanced Materials. 2019;31(39):1902958. doi: 10.1002/adma.201902958
  • Wang H, Bisoyi HK, Zhang X, et al. Visible light‐driven molecular switches and motors: recent developments and applications. Chem–A Eur J. 2022;28(18):e202103906. doi: 10.1002/chem.202103906
  • Comiskey B, Albert JD, Yoshizawa H, et al. An electrophoretic ink for all-printed reflective electronic displays. Nature. 1998;394(6690):253–255. doi: 10.1038/28349
  • Potu S, Rajaboina RK, Gollapelli B, et al. High-performance and low-cost overhead projector sheet-based triboelectric nanogenerator for self-powered cholesteric liquid crystal, electroluminescence, and portable electronic devices. ACS Appl Energy Mater. 2022;5(11):13702–13713. doi: 10.1021/acsaem.2c02359
  • Chen Y, Au J, Kazlas P, et al. Flexible active-matrix electronic ink display. Nature. 2003;423(6936):136–136. doi: 10.1038/423136a
  • Buttinoni I, Bialké J, Kümmel F, et al. Dynamical clustering and phase separation in suspensions of self-propelled colloidal particles. Phys Rev Lett. 2013;110(23):238301. doi: 10.1103/PhysRevLett.110.238301
  • Rathore S, Desai PM, Liew CV, et al. Microencapsulation of microbial cells. J Food Eng. 2013;116(2):369–381. doi: 10.1016/j.jfoodeng.2012.12.022
  • Lee SS, Kim S-H. Controlled encapsulation of cholesteric liquid crystals using emulsion templates. Macromol Res. 2018;26(12):1054–1065. doi: 10.1007/s13233-018-6148-3
  • Green BK, Lowell S. Oil-containing microscopic capsules and method of making them. Google Patents; 2,800,457[P]. 1957–7–23.
  • Ding F, Wu R, Huang X, et al. Anthocyanin loaded composite gelatin films crosslinked with oxidized alginate for monitoring spoilage of flesh foods. Food Pack Shelf Life. 2024;42:101255. doi: 10.1016/j.fpsl.2024.101255
  • Li C, Liu J, Li W, et al. Biobased intelligent food-packaging materials with sustained-release antibacterial and real-time monitoring ability. ACS Appl Mater Inter. 2023;15(31):37966–37975. doi: 10.1021/acsami.3c09709
  • Li S, Wei N, Wei J, et al. Curcumin and silver nanoparticles loaded antibacterial multifunctional pectin/gelatin films for food packaging applications. Int J Biol Macromol. 2024;266:131248. doi: 10.1016/j.ijbiomac.2024.131248
  • Ando M, Komura S, Tsumura M, et al. PDLC device and method of making, with liquid crystal microcapsules having a uniform diameter. U.S. Patent 5,784,136. 1998 Jul 21.
  • Guan Y, Zhang L, Wang D, et al. Preparation of thermochromic liquid crystal microcapsules for intelligent functional fiber. Mater Design. 2018;147:28–34. doi: 10.1016/j.matdes.2018.03.030
  • Wang J, Jákli A, West JL. Morphology tuning of electrospun liquid crystal/polymer fibers. Chemphyschem. 2016;17(19):3080–3085. doi: 10.1002/cphc.201600430
  • Chen CP, Kim DS, Jhun CG. Electro-optical effects of a color polymer-dispersed liquid crystal device by micro-encapsulation with a pigment-doped shell. Crystals. 2019;9(7):364. doi: 10.3390/cryst9070364
  • Cao Z, Ziener U. A versatile technique to fabricate capsules: miniemulsion. Curr Org Chem. 2013;17(1):30–38. doi: 10.2174/138527213805289169
  • Consoli L, Hubinger MD, Dragosavac MM. Encapsulation of resveratrol via spray-drying of oil-in-water emulsions produced by ultrasound or membrane emulsification. J Food Eng. 2023;350:111488. doi: 10.1016/j.jfoodeng.2023.111488
  • Vladisavljevic GT, Schubert H. Preparation and analysis of oil-in-water emulsions with a narrow droplet size distribution using Shirasu-porous-glass (SPG) membranes. Desalination. 2002;144(1–3):167–172. doi: 10.1016/S0011-9164(02)00307-7
  • Zimmermann R, Leal BBJ, Braghirolli DI, et al. Production of nanostructured systems: main and innovative techniques. Drug Discovery Today. 2023;28(2):103454. doi: 10.1016/j.drudis.2022.103454
  • Huang R, Lan R, Shen C, et al. Remotely controlling drug release by light-responsive cholesteric liquid crystal microcapsules triggered by molecular motors. ACS Appl Mater Inter. 2021;13(49):59221–59230. doi: 10.1021/acsami.1c16367
  • Guo J, Zhang J, Zhang Q, et al. Fabrication of cholesteric liquid crystal microcapsulates by interfacial polymerization and potential as photonic materials. RSC Adv. 2013;3(44):21620–21627. doi: 10.1039/c3ra43502d
  • Kim M, Park KJ, Seok S, et al. Fabrication of microcapsules for dye-doped polymer-dispersed liquid crystal-based smart windows. ACS Appl Mater Inter. 2015;7(32):17904–17909. doi: 10.1021/acsami.5b04496
  • Ju H-K, Kim J-W, Han S-H, et al. Thermotropic liquid-crystal/polymer microcapsules prepared by in situ suspension polymerization. Colloid Polym Sci. 2002;280(10):879–885. doi: 10.1007/s00396-002-0696-x
  • Hao H, Liu X. Preparation and characterization of thermotropic liquid crystal microcapsules and application in textile. Fibers Polym. 2017;18(2):246–252. doi: 10.1007/s12221-017-6602-4
  • Sheng M, Zhang L, Wang D, et al. Fabrication of dye-doped liquid crystal microcapsules for electro-stimulated responsive smart textiles. Dyes Pigments. 2018;158:1–11. doi: 10.1016/j.dyepig.2018.05.025
  • Sheng M, Zhang L, West JL, et al. Multicolor electrochromic dye-doped liquid crystal yolk–shell microcapsules. ACS Appl Mater Inter. 2020;12(26):29728–29736. doi: 10.1021/acsami.0c09354
  • Yang T, Yuan D, Liu W, et al. Thermochromic cholesteric liquid crystal microcapsules with cellulose nanocrystals and a melamine resin hybrid shell. ACS Appl Mater Interfaces. 2022;14(3):4588–4597. doi: 10.1021/acsami.1c23101
  • Shorey R, Mekonnen TH. Esterification of lignin with long chain fatty acids for the stabilization of oil-in-water Pickering emulsions. Int J Biol Macromol. 2023;230:123143. doi: 10.1016/j.ijbiomac.2023.123143
  • Tang C, Chen Y, Luo J, et al. Pickering emulsions stabilized by hydrophobically modified nanocellulose containing various structural characteristics. Cellulose. 2019;26(13–14):7753–7767. doi: 10.1007/s10570-019-02648-x
  • Tian Y, Sun F, Wang Z, et al. Research progress on plant-based protein Pickering particles: stabilization mechanisms, preparation methods, and application prospects in the food industry. Food ChemFood Chemistry: X. 2023:101066. doi: 10.1016/j.fochx.2023.101066
  • Xia T, Xue C, Wei Z. Physicochemical characteristics, applications and research trends of edible Pickering emulsions. Trends Food Sci Technol. 2021;107:1–15. doi: 10.1016/j.tifs.2020.11.019
  • Yu H, Liu H, Kobayashi T. Fabrication and photoresponse of supramolecular liquid− crystalline microparticles. ACS Appl Mater Inter. 2011;3(4):1333–1340. doi: 10.1021/am2001289
  • Liu H, Kobayashi T, Yu H. Easy fabrication and morphology control of supramolecular liquid‐crystalline polymer microparticles. Macromol Rapid Commun. 2011;32(4):378–383. doi: 10.1002/marc.201000582
  • Zhang Y, Yang H, Chen Y, et al. Progress in fabrication and applications of cholesteric liquid crystal microcapsules. Chem Eur J. 2024;30(8):e202303198. doi: 10.1002/chem.202303198
  • De Filpo G, Nicoletta FP, Chidichimo G. Cholesteric emulsions for colored displays. Adv Mater. 2005;17(9):1150–1152. doi: 10.1002/adma.200401912
  • Lv K, Liu D, Li W, et al. Reflection characteristics of cholesteric liquid crystal microcapsules with different geometries. Dyes Pigments. 2012;94(3):452–458. doi: 10.1016/j.dyepig.2012.02.004
  • Oh H, Kikuchi H, Lee JH, et al. Ultraviolet light screen using cholesteric liquid crystal capsules on the basis of selective reflection. RSC Adv. 2021;11(41):25471–25476. doi: 10.1039/D1RA03499E
  • Gato WE, Wu J, Appiah I, et al. Hepatic proteomic assessment of oral ingestion of titanium dioxide nano fiber (TDNF) in Sprague Dawley rats. J Environ SciHealth A. 2022;57(13–14):1116–1123. doi: 10.1080/10934529.2022.2159733
  • Ma Q, Zhang Y, Huangfu Y, et al. Solid SiO2-sealed mesoporous silica for synergistically combined use of inorganic and organic filters to achieve safe and effective skin protection from all-band UV radiation. ACS Appl Mater Inter. 2023;15(9):12209–12220. doi: 10.1021/acsami.2c21990
  • Venkataraghavan R, Chithra K. Biopolymeric melanoidins capped ZnO nanocomposites: a new hybrid material with UV blocking and suppressed photocatalytic properties for sunscreen action. J Inorg Organomet Polym Mater. 2024;1–16. doi: 10.1007/s10904-023-02965-6
  • Sheng M, Li J, Jiang X, et al. Biomimetic solid–liquid transition structural dye-doped liquid crystal/phase-change-material microcapsules designed for wearable bistable electrochromic fabric. ACS Appl Mater Inter. 2021;13(28):33282–33290. doi: 10.1021/acsami.1c08135
  • Iwai Y, Kaji H, Uchida Y, et al. Chemiluminescence emission in cholesteric liquid crystalline core–shell microcapsules. J Mater Chem C. 2014;2(25):4904–4908. doi: 10.1039/C4TC00699B
  • Uchida Y, Takanishi Y, Yamamoto J. Controlled fabrication and photonic structure of cholesteric liquid crystalline shells. Adv Mater (Deerfield Beach, Fla). 2013;25(23):3234–3237. doi: 10.1002/adma.201300776
  • Lee SS, Kim B, Kim SK, et al. Robust microfluidic encapsulation of cholesteric liquid crystals toward photonic ink capsules. Adv Mater (Deerfield Beach, Fla). 2014;27(4):627–633. doi: 10.1002/adma.201403271
  • Lee SS, Kim SK, Won JC, et al. Reconfigurable photonic capsules containing cholesteric liquid crystals with planar alignment. Angew Chem. 2015;127(50):15481–15485. doi: 10.1002/ange.201507723
  • Lee SS, Seo HJ, Kim YH, et al. Structural color palettes of core–shell photonic ink capsules containing cholesteric liquid crystals. Adv Mater. 2017;29(23):1606894. doi: 10.1002/adma.201606894
  • Yan Q, Wei Z, Lin P, et al. Polymer stabilized cholesteric liquid crystal particles with high thermal stability. Opt Mater Express. 2018;8(6):1536–1550. doi: 10.1364/OME.8.001536
  • Lin P, Yan Q, Wei Z, et al. Chiral photonic crystalline microcapsules with strict monodispersity, ultrahigh thermal stability, and reversible response. ACS Appl Mater Inter. 2018;10(21):18289–18299. doi: 10.1021/acsami.8b02561
  • Jhun CG, Song J-K, Gwag JS. Highly mono-dispersed liquid crystal capsules with core–shell structure. Phys Scr. 2019;94(5):055001. doi: 10.1088/1402-4896/ab0990
  • Lin P, Chen H, Li A, et al. Bioinspired multiple stimuli-responsive optical microcapsules enabled by microfluidics. ACS Appl Mater Inter. 2020;12(41):46788–46796. doi: 10.1021/acsami.0c14698
  • Iwai Y, Iijima R, Yamamoto K, et al. Shrinkage of cholesteric liquid crystalline microcapsule as omnidirectional cavity to suppress optical loss. Adv Opt Mater. 2020;8(6):1901363. doi: 10.1002/adom.201901363
  • Park S, Lee SS, Kim SH. Photonic multishells composed of cholesteric liquid crystals designed by controlled phase separation in emulsion drops. Adv Mater. 2020;32(30):2002166. doi: 10.1002/adma.202002166
  • Choi CH, Weitz DA, Lee CS. One step formation of controllable complex emulsions: from functional particles to simultaneous encapsulation of hydrophilic and hydrophobic agents into desired position. Adv Mater. 2013;25(18):2536–2541. doi: 10.1002/adma.201204657
  • Haase MF, Brujic J. Tailoring of high‐order multiple emulsions by the liquid–liquid phase separation of ternary mixtures. Angewandte Chemie. 2014;53(44):11793–11797. doi: 10.1002/anie.201406040
  • Moerman PG, Hohenberg PC, Vanden-Eijnden E, et al. Emulsion patterns in the wake of a liquid–liquid phase separation front. Proc Natl Acad Sci, USA. 2018;115(14):3599–3604. doi: 10.1073/pnas.1716330115
  • Kim JW, Oh Y, Lee S, et al. Thermochromic microcapsules containing chiral mesogens enclosed by hydrogel shell for colorimetric temperature reporters. Adv Funct Mater. 2022;32(9):2107275. doi: 10.1002/adfm.202107275
  • Lin L, Li W, Wang X, et al. Functional liquid crystal Core/Hydrogel shell microcapsules for monitoring live cells in a 3D microenvironment. Anal Chem. 2023;95(5):2750–2756. doi: 10.1021/acs.analchem.2c03762
  • Wang Q, Zhang Z, Wang C, et al. Bioinspired confined assembly of cellulosic cholesteric liquid crystal bubbles. Adv Sci. 2024;11(11):2308442. doi: 10.1002/advs.202308442
  • Ogiwara Y, Suzuki T, Iwata N, et al. Room-temperature cholesteric liquid crystals of cellulose derivatives with visible reflection. Polymers. 2022;15(1):168. doi: 10.3390/polym15010168
  • Wang S, Qi Y, Wang S, et al. Coassembling hydroxypropyl cellulose into a chiral nematic composite and patternization with a photomask and direct ink writing. ACS Appl Polym Mater. 2023;5(11):9642–9649. doi: 10.1021/acsapm.3c02115
  • Yamabe K, Goto H. Sequential process of chiral imprinting and composite formation allows to produce electrooptically active poly (bis-EDOT)/hydroxypropyl cellulose. Adv Compos Hybrid Mater. 2018;1(3):541–547. doi: 10.1007/s42114-018-0037-2
  • Park N-H, Park S-I, Suh K-D. A novel method for encapsulation of a liquid crystal in monodisperse micron-sized polymer particles. Colloid Polym Sci. 2001;279(11):1082–1089. doi: 10.1007/s003960100524
  • Wang X, Liu D, Li W, et al. Microencapsulation of cholesteric liquid crystal by combined method of solvent evaporation and photopolymerization. Mol Cryst Liq Cryst. 2013;571(1):57–66. doi: 10.1080/15421406.2012.741346
  • Utada AS, Fernandez-Nieves A, Stone HA, et al. Dripping to jetting transitions in coflowing liquid streams. Phys Rev Lett. 2007;99(9):094502. doi: 10.1103/PhysRevLett.99.094502
  • Kim J-W, Han SH, Choi YH, et al. Recent advances in the microfluidic production of functional microcapsules by multiple-emulsion templating. Lab Chip. 2022;22(12):2259–2291. doi: 10.1039/D2LC00196A
  • Kang JH, Reichmanis E. Low‐threshold photon upconversion capsules obtained by photoinduced interfacial polymerization. Angew Chem. 2012;47(124):12011–12014. doi: 10.1002/ange.201205540
  • Shiyanovskaya I, Barua S, Green S, et al. 6.4: single substrate coatable multicolor cholesteric liquid crystal displays. UK Blackwell Publishing Ltd; 2007, 38. p. 65–68.
  • Geng Y, Jang JH, Noh KG, et al. Through the spherical looking‐glass: asymmetry enables multicolored internal reflection in cholesteric liquid crystal shells. Adv Opt Mater. 2018;6(1):1700923. doi: 10.1002/adom.201700923
  • Geng Y, Noh J, Drevensek-Olenik I, et al. High-fidelity spherical cholesteric liquid crystal Bragg reflectors generating unclonable patterns for secure authentication. Sci Rep. 2016;6(1):26840. doi: 10.1038/srep26840
  • Yu H, Dong C, W Z, et al. Wrinkled liquid‐crystalline microparticle‐enhanced photoresponse of PDLC‐like films by coupling with mechanical stretching. Small. 2011;7(21):3039–3045. doi: 10.1002/smll.201101098
  • Cheng Z, Wang T, Li X, et al. NIR–vis–UV light-responsive actuator films of polymer-dispersed liquid crystal/graphene oxide nanocomposites. ACS Appl Mater Inter. 2015;7(49):27494–27501. doi: 10.1021/acsami.5b09676
  • Yu L, Cheng Z, Dong Z, et al. Photomechanical response of polymer-dispersed liquid crystals/graphene oxide nanocomposites. J Mater Chem C. 2014;2(40):8501–8506. doi: 10.1039/C4TC01097C

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.