0
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Push-pull biphenyl and tolane derivatives as novel luminescent liquid crystals: synthesis and properties

, , ORCID Icon & ORCID Icon
Received 22 May 2024, Accepted 15 Jul 2024, Published online: 24 Jul 2024

References

  • Ranjithaa BS, Alassar M, Shanker G. Luminous and fluorescent cyanobiphenyls exhibiting super-cooled nematic phases. Liq Cryst Early Access. 2024:1–12. doi: 10.1080/02678292.2023.2294959
  • Sawatari Y, Shimomura Y, Takeuchi M, et al. Supramolecular liquid crystals from the dimer of L-shaped molecules with tertiary amide end groups. Aggregate. 2024;5(507e). doi: 10.1002/agt2.507
  • Yang ZW, Huang XY, Cheng JC, et al. Novel fluorescence liquid crystals based on thiophene-vinylnitrile Schiff-base derivatives. Liq Cryst. 2023;50(15):2521–2528. doi: 10.1080/02678292.2022.2028316
  • Wu XJ, Niu XL, Zhu SB, et al. A novel multi-stimuli responsive fluorescence liquid crystal material with aggregation-induced emission effect. Liq Cryst. 2023;50(6):1035–1045. doi: 10.1080/02678292.2023.2200263
  • da Silva Fn, Silva EO, dos Santos G, et al. Unlocking the potential of 2,1,3-benzoxadiazole-based luminescent liquid crystals. Liq Cryst. 2023;50(11–12):1688–1698. doi: 10.1080/02678292.2023.2202160
  • Chang XY, Zhong WY, Han J. Synthesis, mesomorphic and fluorescent properties of stilbene-containing 1,3,4-oxadiazole compounds. Liq Cryst. 2023;50(11–12):1709–1714. doi: 10.1080/02678292.2023.2203104
  • Weber CSB, Tavares A, Araújo B, et al. Rod-shaped cyanoacrylic derivatives with D-π-A architecture: synthesis, thermal, photophysical and theoretical studies. Liq Cryst. 2023;50(2):278–288. doi: 10.1080/02678292.2022.2122088
  • Zharnikova NV, Akopova OB, Kazak AV, et al. Effect of alkyloxy substituents on mesomorphic and photophysical properties of star-shaped tristriazolotriazines. Liq Cryst. 2023;50(7–10):1296–1309. doi: 10.1080/02678292.2023.2196523
  • Luo S, Yang G, Zhang M, et al. Difluoromethoxyl bridged substituted 2-cyano-pyrrole based pure organic luminescent liquid crystals towards white light emitting single-molecule. Liq Cryst. 2023;50(11–12):1699–1708. doi: 10.1080/02678292.2023.2203123
  • Yamada S, Konno T. Development of donor-π-acceptor-type fluorinated tolanes as compact condensed phase luminophores and applications in photoluminescent liquid-crystalline molecules. Chem Rec. 2023;23(9):e202300094. doi: 10.1002/tcr.202300094
  • Yamada S, Yoshida K, Uto E, et al. Development of photoluminescent liquid-crystalline dimers bearing two fluorinated tolane-based luminous mesogens. J Mol Liq. 2023;363:119884. doi: 10.1016/j.molliq.2022.119884
  • Voskuhl J, Giese M. Mesogens with aggregation-induced emission properties: materials with a bright future. Aggregate. 2022;3(1):e124. doi: 10.1002/agt2.124
  • Srinatha MK, Zeba A, Ganjiwale A, et al. The influences of lateral groups on 4-cyanobiphenyl-benzonitrile-based dimers. Liq Cryst. 2022;49(2):217–229. doi: 10.1080/02678292.2021.1956610
  • Matraszek J, Grzeskiewicz K, Górecka E, et al. Fluorescent bent-core mesogens with thiophene-based central unit. Liq Cryst. 2020;47(12):1803–1810. doi: 10.1080/02678292.2020.1729427
  • Yang X, Zhou M, Wang Y, et al. Electric-field-regulated energy transfer in chiral liquid crystals for enhancing upconverted circularly polarized luminescence through steering the photonic bandgap. Adv Mater. 2020;32(24):2000820. doi: 10.1002/adma.202000820
  • Arakawa Y, Sasaki S, Igawa K. Birefringence and photoluminescence properties of diphenylacetylene-based liquid crystal dimers. New J Chem. 2020;44(40):17531–17541. doi: 10.1039/D0NJ04426A
  • Pratap G, Malkar D, Varathan E, et al. 3-cyano thiophene-based π-conjugated mesogens: XRD and 13C NMR investigations. Liq Cryst. 2019;46(5):680–693. doi: 10.1080/02678292.2018.1518548
  • Buchs J, Gessner A, Heyne B, et al. Fluorescent liquid crystals with rod-shaped π-conjugated hydrocarbon core. Liq Cryst. 2019;46(2):281–298. doi: 10.1080/02678292.2018.1499150
  • Zhang W, Sakurai T, Aotani M, et al. Highly fluorescent liquid crystals from excited-state intramolecular proton transfer molecules. Adv Opti Mater. 2019;7(2):1801349. doi: 10.1002/adom.201801349
  • Padalkar VS, Tsutsui Y, Sakurai T, et al. Optical and structural properties of ESIPT inspired HBT–fluorene molecular aggregates and liquid crystals. J Phys Chem B. 2017;121(45):10407–10416. doi: 10.1021/acs.jpcb.7b08073
  • Ghosh T, Lehmann M. Recent advances in heterocycle-based metal-free calamitics. J Mater Chem C. 2017;5(47):12308–12337. doi: 10.1039/C7TC03502K
  • Wöhrle T, Wurzbach I, Kirres J, et al. Discotic liquid crystals. Chem Rev. 2016;116(3):1139–1241. doi: 10.1021/acs.chemrev.5b00190
  • Fleischmann EK, Zentel R. Liquid‐crystalline ordering as a concept in materials science: from semiconductors to stimuli‐responsive devices. Angew Chem Int Ed. 2013;52(34):8810. doi: 10.1002/anie.201300371
  • Marcelo NF, Vieira AA, Cristiano R, et al. Polarized light emission from aligned luminescent liquid crystal films based on 4,7-disubstituted-2,1,3-benzothiadiazoles. Synth Met. 2009;159(7–8):675–680. doi: 10.1016/j.synthmet.2008.12.014
  • Sagara Y, Kato T. Stimuli-responsive luminescent liquid crystals: change of photoluminescent colours triggered by a shear-induced phase transition. Angew Chem Int Ed. 2004;47(28):5175–5178. doi: 10.1002/anie.200800164
  • Giménez R, Piñol M, Serrano JL. Luminescent liquid crystals derived from 9,10-bis(phenylethynyl)anthracene. Chem Mater. 2004;16(7):1377–1383. doi: 10.1021/cm030582u
  • O’Neill M, Kelly SM. Liquid crystals for charge transport, luminescence, and photonics. Adv Mater. 2003;15(14):1135–1146. doi: 10.1002/adma.200300009
  • Salamonczyk M, Kovarova A, Svoboda J, et al. Switchable fluorescent liquid crystals. Appl Phys Lett. 2009;95(17):171901. doi: 10.1063/1.3250163
  • Tsutsui Y, Zhang W, Ghosh S, et al. Electrically switchable amplified spontaneous emission from liquid crystalline phase of an AIEE-Active ESIPT molecule. Adv Optical Mater. 2020;8(14):1902158. doi: 10.1002/adom.201902158
  • Gray GW, Harrison KJ, Nash JA. New family of nematic liquid crystals for displays. Electron Lett. 1973;6:130–131. doi: 10.1049/el:19730096
  • Goodby JW. The nanoscale engineering of nematic liquid crystals for displays. Liq Cryst. 2011;38(11–12):1363–1387. doi: 10.1080/02678292.2011.614700
  • Ozaki M, Matsuhisa Y, Yoshida H, et al. Photonic crystals based on chiral liquid crystal. Phys Status Solid A. 2007;204(11):3777–3789. doi: 10.1002/pssa.200776422
  • Uchimura M, Watanabe Y, Araoka F, et al. Development of laser dyes to realize low threshold in dye-doped cholesteric liquid crystal lasers. Adv Mater. 2010;22:4473–4478. doi: 10.1002/adma.201001046
  • Gevorgyan AH, Simoni F. Optical properties of heliconical cholesterics: effects of losses and photonic density of states. Liq Cryst. 2024:1–10. doi: 10.1080/02678292.2024.2346919
  • Gong ZL, Li ZQ, Zhong YW. Circularly polarized luminescence of coordination aggregates. Aggregate. 2022;3(5):e177. doi: 10.1002/agt2.177
  • He YR, Lin SY, Guo JB, et al. Circularly polarized luminescent self-organized helical superstructures: from materials and stimulus-responsiveness to applications. Aggregate. 2022;3(5):e141. doi: 10.1002/agt2.141
  • Yang J, Zaho W, He W, et al. Liquid crystalline blue phase materials with three-dimensional nanostructures. J Mater Chem C. 2019;7(43):13352–13366. doi: 10.1039/C9TC04380B
  • Cao W, Muñoz A, Palffy-Muhoray P, et al. Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II. Nat Mater. 2002;1(2):111–113. doi: 10.1038/nmat727
  • Demus D. One century liquid crystal chemistry: from vorländer’s rods to disks, stars and dendrites. Mol Cryst Liq Cryst Technol Sec A. 2001;364(1):25–91. doi: 10.1080/10587250108024978
  • Dąbrowski R, Kula P, Herman J. High birefringence liquid crystals. Crystals. 2013;3(3):443–482. doi: 10.3390/cryst3030443
  • Arakawa Y, Kang S, Tsuji H, et al. The design of liquid crystalline bistolane-based materials with extremely high birefringence. RSC Adv. 2016;6(95):92845–92851. doi: 10.1039/C6RA14093A
  • Arakawa Y, Kang S, Nakajima S, et al. Diphenyltriacetylenes: novel nematic liquid crystal materials and analysis of their nematic phase-transition and birefringence behaviours. J Mater Chem C. 2013;1(48):8094–8102. doi: 10.1039/C3TC31658K
  • Arakawa Y, Nakajima S, Ishige R, et al. Synthesis of diphenyl-diacetylene-based nematic liquid crystals and their high birefringence properties. J Mater Chem. 2012;22(17):8394–8398. doi: 10.1039/C2JM16002A
  • Tanaka T, Matsumoto A, Klymchenko AS, et al. Fluorescent solvatochromic probes for long-term imaging of lipid order in living cells. Adv Sci. 2024;11(17):2309721. doi: 10.1002/advs.202309721
  • Klymchenko AS. Solvatochromic and fluorogenic dyes as environment-sensitive probes: design and biological applications. Acc Chem Res. 2017;50(2):366–375. doi: 10.1021/acs.accounts.6b00517
  • Sasaki S, Igawa K, Konishi G. The effect of regioisomerism on the solid-state fluorescence of bis(piperidyl)anthracenes: structurally simple but bright AIE luminogens. J Mater Chem C. 2015;3(23):5940–5950. doi: 10.1039/C5TC00946D
  • Niko Y, Kawauchi S, Konishi G. Solvatochromic pyrene analogues of prodan exhibiting extremely high fluorescence quantum yields in apolar and polar solvents. Chem Eur J. 2013;19(30):9760–9765. doi: 10.1002/chem.201301020
  • Lord SJ, Conley NR, Lee HL, et al. A photoactivatable push−pull fluorophore for single-molecule imaging in live cells. J Am Chem Soc. 2008;130(29):9204–9205. doi: 10.1021/ja802883k
  • Valeur B, Berberan–Santos MN. Molecular fluorescence, principles and application. Weinheim: Wiley-VCH; 2012.
  • Ruoliene J, Adomeńs P, Tubelyt A, et al. Liquid crystalline 4-alkylamino-4’-cyanobiphenyls. Liq Cryst. 1981;78(1):211–216. doi: 10.1080/00268948108082157
  • Chingakham BS, Veerababurao K, Akshaya KS, et al. Aqueous-mediated N-Alkylation of amines. Eur J Org Chem. 2007;2007(8):1369–1377. doi: 10.1002/ejoc.200600937
  • Lee DR, Han SH, Lee CW, et al. Bis(diphenyltriazine) as a new acceptor of efficient thermally activated delayed fluorescent emitters. Dyes Pigm. 2018;151:75–80. doi: 10.1016/j.dyepig.2017.12.048
  • Miyaura N, Suzuki A. Palladium-catalyzed Cross-coupling reactions of organoboron compounds. Chem Rev. 1995;95(7):2457–2483. doi: 10.1021/cr00039a007
  • Lou S, Fu GC. Palladium/Tris(tert-butyl)phosphine-catalyzed Suzuki cross couplings in the presence of water. Adv Synth Catal. 2010;352(11–12):2081–2084. doi: 10.1002/adsc.201000267
  • Wink C, Detert H. Donor-substituted distyrylpyrazines: influence of steric congestion on UV–vis absorption and fluorescence. J Phys Org Chem. 2013;26(2):137–143. doi: 10.1002/poc.2978
  • Sonogashira K, Tohda Y, Hagihara N. A convenient synthesis of acetylenes: catalytic substitutions of acetylenic hydrogen with bromoalkenes, iodoarenes and bromopyridines. Tetrahedron Lett. 1975;16(50):4467–4470. doi: 10.1016/S0040-4039(00)91094-3
  • Martin S, Manolis DT, Benjamin B, et al. Donor–acceptor (D–A)-Substituted polyyne chromophores: modulation of their optoelectronic properties by varying the length of the acetylene spacer. Chem Eur J. 2013;19(38):12693–12704. doi: 10.1002/chem.201301642
  • Cruickshank E, Strachan GJ, Storey JMD, et al. Chalcogen bonding and liquid crystallinity: understanding the anomalous behaviour of the 4′-(alkylthio)[1,1′-biphenyl]-4-carbonitriles (nSCB). J Mol Liq. 2022;346(15):117094. doi: 10.1016/j.molliq.2021.117094
  • Hird M. Fluorinated liquid crystals–properties and applications. Chem Soc Rev. 2007;36(12):2070–2095. doi: 10.1039/B610738A
  • Shimomura Y, Tokita M, Kawamura A, et al. Fluorinated poly(pentylene 4,4′-bibenzoate)s with low isotropization temperatures and unique phase transition behaviour. Macromolecules. 2023;56(13):5152–5161. doi: 10.1021/acs.macromol.3c00773
  • Kato T, Frechet JMJ. A new approach to mesophase stabilization through hydrogen-bonding molecular interactions in binary mixtures. J Am Chem Soc. 1989;111(22):8533–8534. doi: 10.1021/ja00204a044
  • Arakawa Y, Sasaki Y, Tsuji H. Supramolecular hydrogen-bonded liquid crystals based on 4-n-alkylthiobenzoic acids and 4,4′-bipyridine: their mesomorphic behavior with comparative study including alkyl and alkoxy counterparts. J Mol Liq. 2019;280:153–159. doi: 10.1016/j.molliq.2019.01.119
  • Walker R, Pociecha D, Martinez-Felipe A, et al. Hydrogen bonding and the design of twist-bend nematogens. J Mol Liq. 2020;303:112630. doi: 10.1016/j.molliq.2020.112630
  • Shimomura Y, Konishi G. Push-pull bridged distyrylbenzene with highly bright solid-state red-orange aggregation-induced emission. Chem Eur J. 2023;29(42). doi: 10.1002/chem.202301191
  • Iwai R, Suzuki S, Sasaki S, et al. Bridged stilbenes: AIEgens designed via a simple strategy to control the non-radiative decay pathway. Angew Chem Int Ed. 2020;59(26):10566–10573. doi: 10.1002/anie.202000943
  • Deng Y, Yuan W, Jia Z, et al. H- and J-Aggregation of fluorene-based Chromophores. J Phys Chem B. 2014;118(49):14536–14545. doi: 10.1021/jp510520m
  • Liao G, Zhang J, Zheng X, et al. Crystallization-induced emission enhancement of highly electron-deficient dicyanomethylenebridged triarylboranes. Chem Commun. 2021;57(64):7926–7929. doi: 10.1039/d1cc03311e
  • Lakowicz JR. Principles of Fluorescence Spectroscopy. 3rd ed. (NY): Springer; 2006.
  • Shimizu M, Hiyama T. Organic fluorophores exhibiting highly efficient photoluminescence in the solid state. Chem Asian J. 2010;5:1516–1531. doi: 10.1002/asia.200900727
  • Sasaki S, Niko Y, Andrey SK, et al. Design of donor–acceptor geometry for tuning excited-state polarization: fluorescence solvatochromism of push–pull biphenyls with various torsional restrictions on their aryl–aryl bonds. Tetrahedron. 2014;70(41):7551–7559. doi: 10.1016/j.tet.2014.08.002
  • Małgorzata S, Irena B, Wiesław W. Influence of an electron-acceptor substituent type on the photophysical properties of unsymmetrically substituted diphenylacetylene. J Photochem Photobiol A: Chem. 2016;2016(326):76–88. doi: 10.1016/j.jphotochem.2016.03.023
  • Fujiwara T, Zgierski MZ, Lim EC. Combined experimental and computational study of intramolecular charge transfer in p-N,N-Dimethylamino-p′-cyano-diphenylacetylene. J Phys Chem A. 2011;115(5):586–592. doi: 10.1021/jp109674t
  • Hong Y, Lam JWY, Tang BZ. Aggregation-induced emission: phenomenon, mechanism and applications. Chem Commun. 2009;(29):4332–4353. doi: 10.1039/B904665H
  • Li Q, Li Z. The strong light‐emission materials in the aggregated state: what happens from a single molecule to the collective group. Adv Sci. 2017;4:1600484. doi: 10.1002/advs.201600484
  • Yamada S, Uto E, Yoshida K Development of photoluminescent liquid-crystalline dimers bearing two fluorinated tolane-based luminous mesogens. J Mol Liq. 2022;363:119884. doi: 10.1016/j.molliq.2022.119884
  • Ikeda T, Kurihara S, Tazuke S. Excimer formation kinetics in liquid–crystalline alkylcyanobiphenyls. J Phys Chem. 1990;94(17):6550–6555. doi: 10.1021/j100380a008
  • Subramanian R, Patterson LK, Levanon H. Luminescence behaviour as a probe for phase transition s and excimer formation in liquid crystals: dodecylcyanobiphenyl. Chem Phys Lett. 1982;93(6):578–581. doi: 10.1016/0009-2614(82)83733-0