376
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Controlling the past, owning the present, and future: cholinergic modulation decreases semantic perseverations in a person with post-stroke aphasia

ORCID Icon, , , , ORCID Icon, ORCID Icon, & ORCID Icon show all
Pages 1293-1311 | Received 28 May 2021, Accepted 07 Jul 2021, Published online: 05 Aug 2021

References

  • Aarsland, D., Larsen, J. P., Reinvang, I., & Aasland, A. M. (1994). Effects of cholinergic blockade on language in healthy young women. Brain, 117(6), 1377–1384. https://doi.org/10.1093/brain/117.6.1377
  • Almairac, F., Herbet, G., Moritz-Gasser, S., De Champfleur, N. M., & Duffau, H. (2015). The left inferior fronto-occipital fasciculus subserves language semantics: A multilevel lesion study. Brain Structure and Function, 220(4), 1983–1995. https://doi.org/10.1007/s00429-014-0773-1
  • Amaducci, L., Sorbi, S., Albanese, A., & Gainotti, G. (1981). Choline acetyltransferase (ChAT) activity differs in right and left human temporal lobes. Neurology, 31(7), 799–805. https://doi.org/10.1212/WNL.31.7.799
  • Amunts, K., Lenzen, M., Friederici, A. D., Schleicher, A., Morosan, P., Palomero-Gallagher, N., Zilles, K., & Poeppel, D. (2010). Broca’s region: Novel organizational principles and multiple receptor mapping. PLoS Biology, 8(9), e1000489. https://doi.org/10.1371/journal.pbio.1000489
  • Asp, E., Cloutier, F., Fay, S., Cook, C., Lou, R. M., Fisk, J., Dei, D.-W., & Rockwood, K. (2006). Verbal repetition in patients with Alzheimer’s disease who receive donepezil. International Journal of Geriatric Psychiatry, 21(5), 426–431. https://doi.org/10.1002/gps.1486
  • Ayala, G. (1915). A hitherto undifferentiated nucleus in the forebrain (nucleus subputaminalis). Brain, 37(3–4), 433–448. https://doi.org/10.1093/brain/37.3-4.433
  • Bajada, C. J., Ralph, M. A. L., & Cloutman, L. L. (2015). Transport for language south of the Sylvian fissure: the routes and history of the main tracts and stations in the ventral language network. Cortex, 69, 141–151. https://doi.org/10.1016/j.cortex.2015.05.011
  • Basso, A. (2004). Perseveration or the Tower of Babel. Seminars in Speech and Language, 25(4), 375–389. https://doi.org/10.1055/s-2004-837249
  • Basso, A., Forbes, M., & Boller, F. (2013). Rehabilitation of aphasia. In M.P. Barnes and D.C. Good (Eds), Handbook of Clinical Neurology, Vol. 110, (pp. 325–334. Elsevier B.V. https://doi.org/10.1016/B978–0–444–52901–5.00027–7
  • Berthier, M. L. (2021). Ten key reasons for continuing research on pharmacotherapy for post-stroke aphasia. Aphasiology, 35(6), 824–858. https://doi.org/10.1080/02687038.2020.176998
  • Berthier, M. L., Dávila, G., & Torres-Prioris, M. J. (2018). Echophenomena in aphasia: Causal mechanisms and clues for intervention. In P. Coppens & J. L. Patterson (Eds.), Aphasia rehabilitation: Clinical challenges (pp. 143–172). Jones & Bartlett Learning.
  • Berthier, M. L., Green, C., Higueras, C., Fernandez, I., Hinojosa, J., & Martin, M. C. (2006). A randomized, placebo-controlled study of donepezil in poststroke aphasia. Neurology, 67(9), 1687–1689. https://doi.org/10.1212/01.wnl.0000242626.69666.e2
  • Berthier, M. L., Hinojosa, J., Martín, M., & Fernández, I. (2003). Open-label study of donepezil in chronic poststroke aphasia. Neurology, 60(7), 1218–1219. https://doi.org/10.1212/01.WNL.0000055871.82308.41
  • Berthier, M. L., Pulvermüller, F., Dávila, G., Casares, N. G., & Gutiérrez, A. (2011). Drug therapy of post-stroke aphasia: A review of current evidence. Neuropsychology Review, 21(3), 302–317. https://doi.org/10.1007/s11065-011-9177-7
  • Berthier, M. L., Torres-Prioris, M. J., & López-Barroso, D. (2017). Thinking on treating echolalia in aphasia: Recommendations and caveats for future research directions. Frontiers in Human Neuroscience, 11, 164. https://doi.org/10.3389/fnhum.2017.00164
  • Buckingham, H. W., & Buckingham, S. S. (2011). Is recurrent perseveration a product of deafferented functional systems with otherwise normal post-activation decay rates? Clinical Linguistics and Phonetics, 25(11–12), 1066–1073. https://doi.org/10.3109/02699206.2011.616982
  • Chen, Y., Li, Y.-S., Wang, Z.-Y., Xu, Q., Shi, G.-W., & Lin, Y. (2010). [The efficacy of donepezil for post-stroke aphasia: A pilot case control study]. Zhonghua Nei Ke Za Zhi, 49(2), 115–118. https://doi.org/10.3760/cma.j.issn.0578-1426.2010.02.009
  • Chuah, L. Y. M., & Chee, M. W. L. (2008). Cholinergic augmentation modulates visual task performance in sleep-deprived young adults. Journal of Neuroscience, 28(44), 11369–11377. https://doi.org/10.1523/JNEUROSCI.4045-08.2008
  • Claassen, J. A., & Jansen, R. W. (2006). Cholinergically mediated augmentation of cerebral perfusion in alzheimer’s disease and related cognitive disorders: The cholinergic-vascular hypothesis. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 61(3), 267–271. https://doi.org/10.1093/gerona/61.3.267
  • Cohen, L., & Dehaene, S. (1998). Competition between past and present. Assessment and interpretation of verbal perseverations. Brain, 121(9), 1641–1659. https://doi.org/10.1093/brain/121.9.1641
  • Corbett, F., Jefferies, E., & Lambon Ralph, M. A. (2008). The use of cueing to alleviate recurrent verbal perseverations: Evidence from transcortical sensory aphasia. Aphasiology, 22(4), 363–382. https://doi.org/10.1080/02687030701415245
  • Dell, G. S., Burger, L. K., & Svec, W. R. (1997). Language production and serial order: A functional analysis and a model. Psychological Review, 104(1), 123–147. https://doi.org/10.1037/0033-295X.104.1.123
  • Dell, G. S., Schwartz, M. F., Martin, N., Saffran, E. M., & Gagnon, D. A. (1997). Lexical access in aphasic and nonaphasic speakers. Psychological Review, 104(4), 801–838. https://doi.org/10.1037/0033-295X.104.4.801
  • Drachman, D. A., & Leavitt, J. (1974). Human memory and the cholinergic system: A relationship to aging? Archives of Neurology, 30(2), 113–121. https://doi.org/10.1001/archneur.1974.00490320001001
  • Fuld, P. A., Katzman, R., Davies, P., & Terry, R. D. (1982). Intrusions as a sign of Alzheimer dementia chemical and pathological verification. Annals of Neurology, 11(2), 155–159. https://doi.org/10.1002/ana.410110208
  • García, R. R., Montiel, J. F., Villalón, A. U., Gatica, M. A., & Aboitiz, F. (2004). AChE-rich magnopyramidal neurons have a left-right size asymmetry in Broca’s area. Brain Research, 1026(2), 313–316. https://doi.org/10.1016/j.brainres.2004.08.050
  • Gotts, S. J., Della Rocchetta, A. I., & Cipolotti, L. (2002). Mechanisms underlying perseveration in aphasia: Evidence from a single case study. Neuropsychologia, 40(12), 1930–1947. https://doi.org/10.1016/S0028-3932(02)00067-2
  • Gotts, S. J., & Plaut, D. C. (2004). Connectionist approaches to understanding aphasic perseveration. Seminars in speech and language, 25(4), 323–334. https://doi.org/10.1055/s-2004-837245
  • Hamodat, H., Fisk, J. D., & Darvesh, S. (2019). Cholinergic neurons in nucleus subputaminalis in primary progressive aphasia. Canadian Journal of Neurological Sciences, 46(2), 174–183. https://doi.org/10.1017/cjn.2019.6
  • Helm-Estabrooks, N., Emery, P., & Albert, M. L. (1987). Treatment of Aphasic Perseveration (TAP) program: A New approach to aphasia therapy. Archives of Neurology, 44(12), 1253–1255. https://doi.org/10.1001/archneur.1987.00520240035008
  • Helm-Estabrooks, N., Ramage, A., Bayles, K. A., & Cruz, R. (1998). Perseverative behaviour in fluent and non-fluent aphasic adults. Aphasiology, 12(7–8), 689–698. https://doi.org/10.1080/02687039808249566
  • Heuer, S., & Hallowell, B. (2015). A novel eye-tracking method to assess attention allocation in individuals with and without aphasia using a dual-task paradigm. Journal of Communication Disorders, 55, 15–30. https://doi.org/10.1016/j.jcomdis.2015.01.005
  • Heuer, S., Ivanova, M. V., & Hallowell, B. (2017). More than the verbal stimulus matters: Visual attention in language assessment for people with aphasia using multiple-choice image displays. Journal of Speech, Language, and Hearing Research, 60(5), 1348–1361. https://doi.org/10.1044/2017_JSLHR-L-16-0087
  • Hirsh, K. W. (1998). Perseveration and activation in aphasic speech production. Cognitive Neuropsychology, 15(4), 377–388. https://doi.org/10.1080/026432998381140
  • Hong, J. M., Shin, D. H., Lim, T. S., Lee, J. S., & Huh, K. (2012). Galantamine administration in chronic post-stroke aphasia. Journal of Neurology, Neurosurgery and Psychiatry, 83(7), 675–680. https://doi.org/10.1136/jnnp-2012-302268
  • Hsiao, E. Y., Schwartz, M. F., Schnur, T. T., & Dell, G. S. (2009). Temporal characteristics of semantic perseverations induced by blocked-cyclic picture naming. Brain and Language, 108(3), 133–144. https://doi.org/10.1016/j.bandl.2008.11.003
  • Husain, M., & Mehta, M. A. (2011). Cognitive enhancement by drugs in health and disease. Trends in cognitive sciences, 15(1), 28–36. https://doi.org/10.1016/j.tics.2010.11.002
  • Katz, R. C., & Wertz, R. T. (1997). The efficacy of computer-provided reading treatment for chronic aphasic adults. Journal of Speech, Language, and Hearing Research, 40(3), 493–507. https://doi.org/10.1044/jslhr.4003.493
  • Kay, J., Lesser, R., & Coltheart, M. (1992). PsycholinguisticAssessments of Language Processing in Aphasia. (PALPA). Lawrence Erlbaum Associated Ltd.
  • Kertesz, A. (1982). TheWestern Aphasia Battery. Grune and Stratton.
  • Kilgard, M. P., & Merzenich, M. M. (1998). Cortical map reorganization enabled by nucleus basalis activity. Science, 279(5357), 1714–1718. https://doi.org/10.1126/science.279.5357.1714
  • Kiran, S., & Thompson, C. K. (2019). Neuroplasticity of language networks in aphasia: Advances, updates, and future challenges. Frontiers in Neurology, 10, 295. https://doi.org/10.3389/fneur.2019.00295
  • Kleim, J. A., & Jones, T. A. (2008). Principles of experience-dependent neural plasticity: implications for rehabilitation after brain damage. Journal of Speech, Language, and Hearing Research, 51, S225–S239. https://doi.org/10.1044/1092-4388(2008/018)
  • Kosovicheva, A. A., Sheremata, S. L., Rokem, A., Landau, A. N., & Silver, M. A. (2012). Cholinergic enhancement reduces orientation-specific surround suppression but not visual crowding. Frontiers in Behavioral Neuroscience, 6, 61. https://doi.org/10.3389/fnbeh.2012.00061
  • Lambon Ralph, M. A. (2014). Neurocognitive insights on conceptual knowledge and its breakdown. Philosophical Transactions of the Royal Society B: Biological Sciences, 369(1634), 1634. https://doi.org/10.1098/rstb.2012.0392
  • Lhermitte, F., & Beauvois, M. F. (1973). A visual-speech disconnexion syndrome. Report of a case with optic aphasia, agnosic alexia and colour agnosia. Brain, 96(4), 695–714. https://doi.org/10.1093/brain/96.4.695
  • Lou, V. M., Kitt, C. A., & Price, D. L. (1992). Cholinergic immunoreactive fibres in monkey anterior temporal cortex. Cerebral Cortex, 2(1), 48–55. https://doi.org/10.1093/cercor/2.1.48
  • Martin, N., & Dell, G. S. (2004). Perseverations and anticipations in aphasia: Primed intrusions from the past and future. Seminars in Speech and Language, 25(4), 349–362.  https://doi.org/10.1055/s-2004-837247
  • Martin, N., & Dell, G. S. (2007). Common mechanisms underlying perseverative and non‐perseverative sound and word substitutions. Aphasiology, 21(10–11), 1002–1017. https://doi.org/10.1080/02687030701198346
  • McNamara, P., & Albert, M. L. (2004). Neuropharmacology of verbal perseveration. Seminars in Speech and Language, 25(4), 309–321. https://doi.org/10.1055/s-2004-837244
  • Mesulam, M. M. (2013). Cholinergic circuitry of the human nucleus basalis and its fate in Alzheimer’s disease. Journal of Comparative Neurology, 521(18), 4124–4144. https://doi.org/10.1002/cne.23415
  • Mesulam, M. M., Lalehzari, N., Rahmani, F., Ohm, D., Shahidehpour, R., Kim, G., Gefen, T., Weintraub, S., Bigio, E., & Geula, C. (2019). Cortical cholinergic denervation in primary progressive aphasia with Alzheimer pathology. Neurology, 92(14), E1580–E1588. https://doi.org/10.1212/WNL.0000000000007247
  • Mesulam, M. M., Wieneke, C., Hurley, R., Rademaker, A., Thompson, C. K., Weintraub, S., & Rogalski, E. J. (2013). Words and objects at the tip of the left temporal lobe in primary progressive aphasia. Brain : A Journal of Neurology, 136(Pt 2), 601–618. https://doi.org/10.1093/brain/aws336
  • Moses, M. S., Nickels, L. A., & Sheard, C. (2004). “I’m sitting here feeling aphasic!” A study of recurrent perseverative errors elicited in unimpaired speakers. Brain and Language, 89(1), 157–173. https://doi.org/10.1016/S0093-934X(03)00364-X
  • Muñoz, M. L. (2011). Reducing Aphasic Perseverations: A case study. Perspectives on Neurophysiology and Neurogenic Speech and Language Disorders, 21(4), 176–183. https://doi.org/10.1044/nnsld21.4.176
  • Nitrini, R., Lucato, L. T., Sitta, M. C., Oliveira, M. O., De Andrade, D. C., Silva, V. A., Carneiro, C. G., & Buchpiguel, C. A. (2019). Preserved repetition in thalamic aphasia: A pathophysiological hypothesis. Dementia E Neuropsychologia, 13(2), 244–249. https://doi.org/10.1590/1980-57642018dn13-020015
  • Nozari, N. (2019). The dual origin of semantic errors in access deficit: Activation vs. inhibition deficit. Cognitive Neuropsychology, 36(1–2), 31–53. https://doi.org/10.1080/02643294.2019.1587397
  • Nozari, N., & Hepner, C. R. (2019). To select or to wait? The importance of criterion setting in debates of competitive lexical selection. Cognitive Neuropsychology, 36(5-6), 193–207. https://doi.org/10.1080/02643294.2018.1476335
  • Petrides, M. (2005). Lateral prefrontal cortex: Architectonic and functional organization. Philosophical Transactions of the Royal Society B: Biological Sciences, 360(1456), 781–795. https://doi.org/10.1098/rstb.2005.1631
  • Picciotto, M. R., Higley, M. J., & Mineur, Y. S. (2012). Acetylcholine as a neuromodulator: cholinergic signaling shapes nervous system function and behavior. Neuron, 76(1), 116–129. https://doi.org/10.1016/j.neuron.2012.08.036
  • Pulvermüller, F., Neininger, B., Elbert, T., Mohr, B., Rockstroh, B., Koebbel, P., & Taub, E. (2001). Constraint-induced therapy of chronic aphasia after stroke. Stroke, 32(7), 1621–1626. https://doi.org/10.1161/01.STR.32.7.1621
  • Rockwood, K., Fay, S., Jarrett, P., & Asp, E. (2007). Effect of galantamine on verbal repetition in AD: A secondary analysis of the VISTA trial. Neurology, 68(14), 1116–1121. https://doi.org/10.1212/01.wnl.0000258661.61577.b7
  • Sandson, J., & Albert, M. L. (1984). Varieties of perseveration. Neuropsychologia, 22(6), 715–732. https://doi.org/10.1016/0028-3932(84)90098-8
  • Saxena, S., & Hillis, A. E. (2017). An update on medications and noninvasive brain stimulation to augment language rehabilitation in post-stroke aphasia. Expert review of neurotherapeutics, 17(11), 1091–1107. https://doi.org/10.1080/14737175.2017.1373020
  • Schnur, T. T., Schwartz, M. F., Brecher, A., & Hodgson, C. (2006). Semantic interference during blocked-cyclic naming: Evidence from aphasia. Journal of Memory and Language, 54(2), 199–227. https://doi.org/10.1016/j.jml.2005.10.002
  • Selden, N. R., Gitelman, D. R., Salamon-Murayama, N., Parrish, T. B., & Mesulam, M. M. (1998). Trajectories of cholinergic pathways within the cerebral hemispheres of the human brain. Brain, 121(12), 2249–2257. https://doi.org/10.1093/brain/121.12.2249
  • Sierpowska, J., Gabarrós, A., Fernández-Coello, A., Camins, À., Castañer, S., Juncadella, M., François, C., & Rodríguez-Fornells, A. (2019). White-matter pathways and semantic processing: Intrasurgical and lesion-symptom mapping evidence. NeuroImage: Clinical, 22, 101704. https://doi.org/10.1016/j.nicl.2019.101704
  • Silver, M. A., Shenhav, A., & D’Esposito, M. (2008). Cholinergic enhancement reduces spatial spread of visual responses in human early visual cortex. Neuron, 60(5), 904–914. https://doi.org/10.1016/j.neuron.2008.09.038
  • Šimić, G., Mrzljak, L., Fučić, A., Winblad, B., Lovrić, H., & Kostović, I. (1999). Nucleus subputaminalis (Ayala): The still disregarded magnocellular component of the basal forebrain may be human specific and connected with the cortical speech area. Neuroscience, 89(1), 73–89. https://doi.org/10.1016/S0306-4522(98)00304-2
  • Smith, K. G., Schmidt, J., Wang, B., Henderson, J. M., & Fridriksson, J. (2018). Task-related differences in eye movements in individuals with aphasia. Frontiers in Psychology, 9(DEC), 2430. https://doi.org/10.3389/fpsyg.2018.02430
  • Stark, J. (2018). Perseveration: clinical features and considerations for treatment. In P. Coppens & J. L. Patterson (Eds.), Aphasia rehabilitation: Clinical challenges (pp. 3–45). Jones & Bartlett Learning.
  • Tanaka, Y., Albert, M. L., Fujita, K., Nonaka, C., & Yokoyama, E. (2006). Treating perseveration improves naming in aphasia. Brain and Language, 99(1–2), 57–58. https://doi.org/10.1016/j.bandl.2006.06.038
  • Tanaka, Y., Miyazaki, M., & Albert, M. L. (1997). Effects of increased cholinergic activity on naming in aphasia. Lancet, 350(9071), 116–117. https://doi.org/10.1016/S0140-6736(05)61820-X
  • Thiel, C. M. (2007). Pharmacological modulation of learning-induced plasticity in human auditory cortex. Restorative Neurology and Neuroscience, 25(3–4), 435–443.
  • Valle, F., & Cuetos, F. (1995). EPLA: Evaluación del procesamiento lingüístico en la afasia. Lawrence Erlbaum Associates.
  • Van Beek, A. H., & Claassen, J. A. (2011). The cerebrovascular role of the cholinergic neural system in Alzheimer's disease. Behavioural brain research, 221(2), 537–542. https://doi.org/10.1016/j.bbr.2009.12.047
  • Walker, G. M., Schwartz, M. F., Kimberg, D. Y., Faseyitan, O., Brecher, A., Dell, G. S., & Coslett, H. B. (2011). Support for anterior temporal involvement in semantic error production in aphasia: New evidence from VLSM. Brain and Language, 117(3), 110–122. https://doi.org/10.1016/j.bandl.2010.09.008
  • Woodhead, Z. V. J., Crinion, J., Teki, S., Penny, W., Price, C. J., & Leff, A. P. (2017). Auditory training changes temporal lobe connectivity in ‘Wernicke’s aphasia’: A randomised trial. Journal of Neurology, Neurosurgery and Psychiatry, 88(7), 586–594. https://doi.org/10.1136/jnnp-2016-314621
  • Yoon, S. Y., Kim, J. K., An, Y. S., & Kim, Y. W. (2015). Effect of donepezil on wernicke aphasia after bilateral middle cerebral artery infarction: Subtraction analysis of brain F-18 Fluorodeoxyglucose positron emission tomographic images. Clinical Neuropharmacology, 38(4), 147–150. https://doi.org/10.1097/WNF.0000000000000089
  • Zhang, X., Shu, B., Zhang, D., Huang, L., Fu, Q., & Du, G. (2018). The efficacy and safety of pharmacological treatments for post-stroke aphasia. CNS & Neurological Disorders - Drug Targets, 17(7), 489–501. https://doi.org/10.2174/1871527317666180706143051

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.