425
Views
15
CrossRef citations to date
0
Altmetric
Basic Science

Inflammatory changes in optic nerve after closed-head repeated traumatic brain injury: Preliminary study

, , , &
Pages 1428-1435 | Received 02 Apr 2016, Accepted 22 Jul 2016, Published online: 11 Nov 2016

References

  • Tzekov R, Quezada A, Gautier M, Biggins D, Frances C, Mouzon B, Jamison J, Mullan M, Crawford F. Repetitive mild traumatic brain injury causes optic nerve and retinal damage in a mouse model. Journal of Neuropathology and Experimental Neurology 2014;73:345–361.
  • Wang CH, Wang B, Wendu RL, Bi HE, Cao GF, Ji C, Jiang Q, Yao J. Protective role of wallerian degeneration slow (wld(s)) gene against retinal ganglion cell body damage in a wallerian degeneration model. Experimental Therapy Medicine 2013;5:621–625.
  • Zimmerman LE, De Venecia G, Hamasaki DI. Pathology of the optic nerve in experimental acute glaucoma. Investigative Ophthalmology 1967;6:109–125.
  • Ojo JO, Bachmeier C, Mouzon BC, Tzekov R, Mullan M, Davies H, Stewart MG, Crawford F. Ultrastructural changes in the white and gray matter of mice at chronic time points after repeated concussive head injury. Journal of Neuropathology and Experimental Neurology 2015;74:1012–1035.
  • Tzekov R, Dawson C, Orlando M, Mouzon B, Reed J, Evans J, Crynen G, Mullan M, Crawford F. Sub-chronic neuropathological and biochemical changes in mouse visual system after repetitive mild traumatic brain injury. PLoS One 2016;11:e0153608.
  • Morris M, Maeda S, Vossel K, Mucke L. The many faces of tau. Neuron 2011;70:410–426.
  • Migheli A, Butler M, Brown K, Shelanski ML. Light and electron microscope localization of the microtubule-associated tau protein in rat brain. Journal of Neuroscience 1988;8:1846–1851.
  • Ho WL, Leung Y, Tsang AW, So KF, Chiu K, Chang RC. Review: Tauopathy in the retina and optic nerve: Does it shadow pathological changes in the brain? Molecular Vision 2012;18;2700–2710.
  • Tzekov R, Mullan M. Vision function abnormalities in alzheimer disease. Surveys in Ophthalmology 2014;59:414–433.
  • Gasparini L, Crowther RA, Martin KR, Berg N, Coleman M, Goedert M, Spillantini MG. Tau inclusions in retinal ganglion cells of human p301s tau transgenic mice: Effects on axonal viability. Neurobiology of Aging 2011;32:419–433.
  • Bull ND, Guidi A, Goedert M, Martin KR, Spillantini MG. Reduced axonal transport and increased excitotoxic retinal ganglion cell degeneration in mice transgenic for human mutant p301s tau. Boca Raton (FL): PLoS One 2012;7:e34724.
  • Bennett RE, Reuter-Rice K, Laskowitz DT. Genetic influences in traumatic brain injury. In: Laskowitz DT, Grant G, editors. Genetic influences in traumatic brain injury. Translational research in traumatic brain injury. CRC Press; 2016; 179–218 .
  • Gotz J, Probst A, Spillantini MG, Schafer T, Jakes R, Burki K, Goedert M. Somatodendritic localization and hyperphosphorylation of tau protein in transgenic mice expressing the longest human brain tau isoform. EMBO Journal 1995;14:1304–1313.
  • Andorfer C, Kress Y, Espinoza M, de Silva R, Tucker KL, Barde YA, Duff K, Davies P. Hyperphosphorylation and aggregation of tau in mice expressing normal human tau isoforms. Journal of Neurochemistry 2003;86:582–590.
  • Andorfer C, Acker CM, Kress Y, Hof PR, Duff K, Davies P. Cell-cycle reentry and cell death in transgenic mice expressing nonmutant human tau isoforms. Journal of Neuroscience 2005;25:5446–5454.
  • Polydoro M, Acker CM, Duff K, Castillo PE, Davies P. Age-dependent impairment of cognitive and synaptic function in the htau mouse model of tau pathology. Journal of Neuroscience 2009;29:10741–10749.
  • Xu L, Ryu J, Nguyen JV, Arena J, Rha E, Vranis P, Hitt D, Marsh-Armstrong N, Koliatsos VE. Evidence for accelerated tauopathy in the retina of transgenic p301s tau mice exposed to repetitive mild traumatic brain injury. Experimental Neurology 2015;273;168–176.
  • Mouzon BC, Bachmeier C, Ferro A, Ojo JO, Crynen G, Acker CM, Davies P, Mullan M, Stewart W, Crawford F. Chronic neuropathological and neurobehavioral changes in a repetitive mild traumatic brain injury model. Annals of Neurology 2014;75:241–254.
  • Mouzon B, Chaytow H, Crynen G, Bachmeier C, Stewart J, Mullan M, Stewart W, Crawford F. Repetitive mild traumatic brain injury in a mouse model produces learning and memory deficits accompanied by histological changes. Journal of Neurotrauma 2012;29:2761–2773.
  • Ojo JO, Mouzon B, Algamal M, Leary P, Lynch C, Abdullah L, Evans J, Mullan M, Bachmeier C, Stewart W, Crawford F. Chronic repetitive mild traumatic brain injury results in reduced cerebral blood flow, axonal injury, gliosis, and increased t-tau and tau oligomers. Journal of Neuropathology and Experimental Neurology 2016;75:636–655 .
  • Ojo JO, Mouzon B, Greenberg MB, Bachmeier C, Mullan M, Crawford F. Repetitive mild traumatic brain injury augments tau pathology and glial activation in aged htau mice. Journal of Neuropathology and Experimental Neurology 2013;72:137–151.
  • Ruifrok AC, Johnston DA. Quantification of histochemical staining by color deconvolution. Analytical and Quantitative Cytology and Histology 2001;23:291–299.
  • Hawkins BE, Krishnamurthy S, Castillo-Carranza DL, Sengupta U, Prough DS, Jackson GR, DeWitt DS, Kayed R. Rapid accumulation of endogenous tau oligomers in a rat model of traumatic brain injury: Possible link between traumatic brain injury and sporadic tauopathies. Journal of Biological Chemistry 2013;288:17042–17050.
  • Kondo A, Shahpasand K, Mannix R, Qiu J, Moncaster J, Chen CH, Yao Y, Lin YM, Driver JA, Sun Y, et al. Antibody against early driver of neurodegeneration cis p-tau blocks brain injury and tauopathy. Nature 2015;523:431–436.
  • Ojo JO, Mouzon BC, Crawford F. Repetitive head trauma, chronic traumatic encephalopathy and tau: Challenges in translating from mice to men. Experimental Neurology 2016;275:389–404.
  • Brody DL, Benetatos J, Bennett RE, Klemenhagen KC, Mac Donald CL. The pathophysiology of repetitive concussive traumatic brain injury in experimental models; new developments and open questions. Molecular and Cellular Neuroscience 2015;66B:91–98.
  • de Calignon A, Polydoro M, Suarez-Calvet M, William C, Adamowicz DH, Kopeikina KJ, Pitstick R, Sahara N, Ashe KH, Carlson GA, et al. Propagation of tau pathology in a model of early Alzheimer’s disease. Neuron 2012;73:685–697.
  • Higuchi M, Zhang B, Forman MS, Yoshiyama Y, Trojanowski JQ, Lee VM. Axonal degeneration induced by targeted expression of mutant human tau in oligodendrocytes of transgenic mice that model glial tauopathies. Journal of Neuroscience 2005;25:9434–9443.
  • Gennarelli TA, Thibault LE, Tipperman R, Tomei G, Sergot R, Brown M, Maxwell WL, Graham DI, Adams JH, Irvine A, et al. Axonal injury in the optic nerve: A model simulating diffuse axonal injury in the brain. Journal of Neurosurgery 1989;71:244–253.
  • Belkadi A, LoPresti P. Truncated tau with the fyn-binding domain and without the microtubule-binding domain hinders the myelinating capacity of an oligodendrocyte cell line. Journal of Neurochemistry 2008;107:351–360.
  • Adams SJ, Crook RJ, Deture M, Randle SJ, Innes AE, Yu XZ, Lin WL, Dugger BN, McBride M, Hutton M, et al. Overexpression of wild-type murine tau results in progressive tauopathy and neurodegeneration. American Journal of Pathology 2009;175:1598–1609.
  • Gupta N, Fong J, Ang LC, Yucel YH. Retinal tau pathology in human glaucomas. Canadian Journal of Ophthalmology 2008;43:53–60.
  • Yoneda S, Hara H, Hirata A, Fukushima M, Inomata Y, Tanihara H. Vitreous fluid levels of beta-amyloid((1-42)) and tau in patients with retinal diseases. Japanese Journal of Ophthalmology 2005;49:106–108.
  • Chiasseu M, Cueva Vargas JL, Destroismaisons L, Vande Velde C, Leclerc N, Di Polo A. Tau accumulation, altered phosphorylation, and missorting promote neurodegeneration in glaucoma. Journal of Neuroscience 2016;36:5785–5798.
  • Kashiwagi K, Okubo T, Tsukahara S. Association of magnetic resonance imaging of anterior optic pathway with glaucomatous visual field damage and optic disc cupping. Journal of Glaucoma 2004;13:189–195.
  • Zhang YQ, Li J, Xu L, Zhang L, Wang ZC, Yang H, Chen CX, Wu XS, Jonas JB. Anterior visual pathway assessment by magnetic resonance imaging in normal-pressure glaucoma. Acta Ophthalmologica 2012;90:e295–e302.
  • Armstrong RC, Mierzwa AJ, Sullivan GM, Sanchez MA. Myelin and oligodendrocyte lineage cells in white matter pathology and plasticity after traumatic brain injury. Neuropharmacology 2015;pii: S0028-3908(15)00158-6. doi:10.1016/j.neuropharm.2015.04.029. [Epub ahead of print].
  • Sheldon WG, Warbritton AR, Bucci TJ, Turturro A. Glaucoma in food-restricted and ad libitum-fed dba/2nnia mice. Laboratory Animal Science 1995;45:508–518.
  • Cavallotti D, Cavallotti C, Pescosolido N, Iannetti GD, Pacella E. A morphometric study of age changes in the rat optic nerve. Ophthalmologica 2001;215:366–371.
  • Sandell JH, Peters A. Effects of age on the glial cells in the rhesus monkey optic nerve. Journal of Computational Neurology 2002;445:13–28.
  • Cavallotti C, Pacella E, Pescosolido N, Tranquilli-Leali FM, Feher J. Age-related changes in the human optic nerve. Canadian Journal of Ophthalmology 2002;37:389–394.
  • Crompton MR. Visual lesions in closed head injury. Brain 1970;93:785–792.
  • Turner JWA. Indirect injuries of the optic nerve. Brain 1943;66:140–151.
  • Singman EL, Daphalapurkar N, White H, Nguyen TD, Panghat L, Chang J, McCulley T. Indirect traumatic optic neuropathy. Military Medicine Research 2016;3:2.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.