310
Views
13
CrossRef citations to date
0
Altmetric
Articles

Gambogic amide, a selective TrkA agonist, does not improve outcomes from traumatic brain injury in mice

, , , , , , & show all
Pages 257-268 | Received 24 Apr 2017, Accepted 02 Oct 2017, Published online: 11 Dec 2017

References

  • Hyder AA, Wunderlich CA, Puvanachandra P, Gururaj G, Kobusingye OC. 2007. “The impact of traumatic brain injuries: a global perspective.” NeuroRehabilitation 22(5): 341–53.
  • Carroll LJ, Cassidy JD, Peloso PM, Borg J, von Holst H, Holm L, Paniak C, Pepin M. Injury WHOCCTFoMTB.2004. “Prognosis for mild traumatic brain injury: results of the WHO Collaborating Centre Task Force on Mild Traumatic Brain Injury.” J Rehabil Med 43: 84–105.
  • Faden AI, Loane DJ. 2015. “Chronic neurodegeneration after traumatic brain injury: Alzheimer disease, chronic traumatic encephalopathy, or persistent neuroinflammation?” Neurotherapeutics 12 (1): 143–50. doi: 10.1007/s13311-014-0319-5.
  • Rapoport MJ, McCullagh S, Shammi P, Feinstein A. 2005. “Cognitive impairment associated with major depression following mild and moderate traumatic brain injury.” J Neuropsychiatry Clin Neurosci 17 (1): 61–65. doi: 10.1176/jnp.17.1.61.
  • Blennow K, Hardy J, Zetterberg H. 2012. “The neuropathology and neurobiology of traumatic brain injury.” Neuron 76 (5): 886–99. doi: 10.1016/j.neuron.2012.11.021.
  • Ragnarsson KT. 2002. “Results of the NIH consensus conference on “rehabilitation of persons with traumatic brain injury”.” Restor Neurol Neurosci 20(3–4): 103–08.
  • Shultz SR, McDonald SJ, Vonder Haar C, Meconi A, Vink R, Van Donkelaar P, Taneja C, Iverson GL, Christie BR. 2016. “The potential for animal models to provide insight into mild traumatic brain injury: translational challenges and strategies.” Neurosci Biobehav Rev76: 396–414. doi: 10.1016/j.neubiorev.2016.09.014.
  • Shojo H, Kaneko Y, Mabuchi T, Kibayashi K, Adachi N, Borlongan CV. 2010. “Genetic and histologic evidence implicates role of inflammation in traumatic brain injury-induced apoptosis in the rat cerebral cortex following moderate fluid percussion injury.” Neuroscience 171 (4): 1273–82. doi: 10.1016/j.neuroscience.2010.10.018.
  • Streit WJ, Mrak RE, Griffin WS. 2004. “Microglia and neuroinflammation: a pathological perspective.” J Neuroinflammation 1 (1): 14. doi: 10.1186/1742-2094-1-14.
  • Carson MJ, Thrash JC, Walter B. 2006. “The cellular response in neuroinflammation: the role of leukocytes, microglia and astrocytes in neuronal death and survival.” Clin Neurosci Res 6 (5): 237–45. doi: 10.1016/j.cnr.2006.09.004.
  • Hicks RR, Smith DH, Lowenstein DH, Saint Marie R, McIntosh TK. 1993. “Mild experimental brain injury in the rat induces cognitive deficits associated with regional neuronal loss in the hippocampus.” J Neurotrauma 10 (4): 405–14. doi: 10.1089/neu.1993.10.405.
  • Nimmo AJ, Cernak I, Heath DL, Hu X, Bennett CJ, Vink R. 2004. “Neurogenic inflammation is associated with development of edema and functional deficits following traumatic brain injury in rats.” Neuropeptides 38 (1): 40–47. doi: 10.1016/j.npep.2003.12.003.
  • Wright DK, Trezise J, Kamnaksh A, Bekdash R, Johnston LA, Ordidge R, Semple BD, Gardner AJ, Stanwell P, O’Brien TJ, et al. 2016. “Behavioral, blood, and magnetic resonance imaging biomarkers of experimental mild traumatic brain injury.” Sci Rep 6: 28713. doi: 10.1038/srep28713.
  • Xiong Y, Mahmood A, Chopp M. 2013. “Animal models of traumatic brain injury.” Nat Rev Neurosci 14 (2): 128–42. doi: 10.1038/nrn3407.
  • Sinson G, Perri BR, Trojanowski JQ, Flamm ES, McIntosh TK. 1997. “Improvement of cognitive deficits and decreased cholinergic neuronal cell loss and apoptotic cell death following neurotrophin infusion after experimental traumatic brain injury.” J Neurosurg 86 (3): 511–18. doi: 10.3171/jns.1997.86.3.0511.
  • Fox GB, Fan L, Levasseur RA, Faden AI. 1998. “Sustained sensory/motor and cognitive deficits with neuronal apoptosis following controlled cortical impact brain injury in the mouse.” J Neurotrauma 15 (8): 599–614. doi: 10.1089/neu.1998.15.599.
  • Loane DJ, Faden AI. 2010. “Neuroprotection for traumatic brain injury: translational challenges and emerging therapeutic strategies.” Trends Pharmacol Sci 31 (12): 596–604. doi: 10.1016/j.tips.2010.09.005.
  • Kumar A, Loane DJ. 2012. “Neuroinflammation after traumatic brain injury: opportunities for therapeutic intervention.” Brain Behav Immun 26 (8): 1191–201. doi: 10.1016/j.bbi.2012.06.008.
  • Hellewell S, Semple BD, Morganti-Kossmann MC. 2016. “Therapies negating neuroinflammation after brain trauma.” Brain Res 1640: (Pt A) 36–56. doi: 10.1016/j.brainres.2015.12.024.
  • Levi-Montalcini R, Angeletti PU. 1968. “Nerve growth factor.” Physiol Rev 48(3): 534–69.
  • Levi-Montalcini R, Cohen S. 1956. “Vitro and in Vivo Effects of a Nerve Growth-Stimulating Agent Isolated from Snake Venom.” Proc Natl Acad Sci U S A 42 (9): 695–99. doi: 10.1073/pnas.42.9.695.
  • Yoon SO, Casaccia-Bonnefil P, Carter B, Chao MV. 1998. “Competitive signaling between TrkA and p75 nerve growth factor receptors determines cell survival.” J Neurosci 18(9): 3273–81.
  • Reichardt LF. 2006. “Neurotrophin-regulated signalling pathways.” Philos Trans R Soc Lond B Biol Sci 361 (1473): 1545–64. doi: 10.1098/rstb.2006.1894.
  • Lv Q, Fan X, Xu G, Liu Q, Tian L, Cai X, Sun W, Wang X, Cai Q, Bao Y, et al. 2013. “Intranasal delivery of nerve growth factor attenuates aquaporins-4-induced edema following traumatic brain injury in rats.” Brain Res 1493: 80–89. doi: 10.1016/j.brainres.2012.11.028.
  • Lv Q, Lan W, Sun W, Ye R, Fan X, Ma M, Yin Q, Jiang Y, Xu G, Dai J, et al. 2014. “Intranasal nerve growth factor attenuates tau phosphorylation in brain after traumatic brain injury in rats.” Journal of the Neurological Sciences 345 (1–2): 48–55. doi: 10.1016/j.jns.2014.06.037.
  • Kromer LF. 1987. “Nerve growth factor treatment after brain injury prevents neuronal death.” Science 235 (4785): 214–16. doi: 10.1126/science.3798108.
  • Sinson G, Voddi M, McIntosh TK. 1995. “Nerve Growth Factor Administration Attenuates Cognitive but Not Neurobehavioral Motor Dysfunction or Hippocampal Cell Loss Following Fluid-Percussion Brain Injury in Rats.” Journal of Neurochemistry 65 (5): 2209–16. doi: 10.1046/j.1471-4159.1995.65052209.x.
  • Tian L, Guo R, Yue X, Lv Q, Ye X, Wang Z, Chen Z, Wu B, Xu G, Liu X. 2012. “Intranasal administration of nerve growth factor ameliorate β-amyloid deposition after traumatic brain injury in rats.” Brain Research 1440: 47–55. doi: 10.1016/j.brainres.2011.12.059.
  • Dixon CE, Flinn P, Bao J, Venya R, Hayes RL. 1997. “Nerve growth factor attenuates cholinergic deficits following traumatic brain injury in rats.” Exp Neurol 146 (2): 479–90. doi: 10.1006/exnr.1997.6557.
  • Longhi L, Watson DJ, Saatman KE, Thompson HJ, Zhang C, Fujimoto S, Royo N, Castelbuono D, Raghupathi R, Trojanowski JQ, et al. 2004. “Ex vivo gene therapy using targeted engraftment of NGF-expressing human NT2N neurons attenuates cognitive deficits following traumatic brain injury in mice.” J Neurotrauma 21 (12): 1723–36. doi: 10.1089/neu.2004.21.1723.
  • Sinson G, Voddi M, McIntosh TK. 1995. “Nerve growth factor administration attenuates cognitive but not neurobehavioral motor dysfunction or hippocampal cell loss following fluid-percussion brain injury in rats.” J Neurochem 65 (5): 2209–16. doi: 10.1046/j.1471-4159.1995.65052209.x.
  • Tria MA, Fusco M, Vantini G, Mariot R. 1994. “Pharmacokinetics of nerve growth factor (NGF) following different routes of administration to adult rats.” Exp Neurol 127 (2): 178–83. doi: 10.1006/exnr.1994.1093.
  • Friden PM, Walus LR, Watson P, Doctrow SR, Kozarich JW, Backman C, Bergman H, Hoffer B, Bloom F, Granholm AC. 1993. “Blood-brain barrier penetration and in vivo activity of an NGF conjugate.” Science 259 (5093): 373–77. doi: 10.1126/science.8420006.
  • Angeletti RH, Aneletti PU, Levi-Montalcini R. 1972. “Selective accumulation of (125 I) labelled nerve growth factor in sympathetic ganglia.” Brain Res 46: 421–25. doi: 10.1016/0006-8993(72)90033-9.
  • Jang SW, Okada M, Sayeed I, Xiao G, Stein D, Jin P, Ye K. 2007. “Gambogic amide, a selective agonist for TrkA receptor that possesses robust neurotrophic activity, prevents neuronal cell death.” Proc Natl Acad Sci U S A 104 (41): 16329–34. doi: 10.1073/pnas.0706662104.
  • Shen J, Yu Q. 2015. “Gambogic amide selectively upregulates TrkA expression and triggers its activation.” Pharmacol Rep 67 (2): 217–23. doi: 10.1016/j.pharep.2014.09.002.
  • Chan CB, Liu X, Jang SW, Hsu SI, Williams I, Kang S, Chen J, Ye K. 2009. “NGF inhibits human leukemia proliferation by downregulating cyclin A1 expression through promoting acinus/CtBP2 association.” Oncogene 28 (43): 3825–36. doi: 10.1038/onc.2009.236.
  • Scheller KJ, Williams SJ, Lawrence AJ, Jarrott B, Djouma E. 2014. “An improved method to prepare an injectable microemulsion of the galanin-receptor 3 selective antagonist, SNAP 37889, using Kolliphor((R)) HS 15.” MethodsX 1: 212–16. doi: 10.1016/j.mex.2014.09.003.
  • Scheller KJ, Williams SJ, Lawrence AJ, Djouma E. 2017. “The galanin-3 receptor antagonist, SNAP 37889, suppresses alcohol drinking and morphine self-administration in mice.” Neuropharmacology 118: 1–12. doi: 10.1016/j.neuropharm.2017.03.004.
  • Yang Y, Salayandia VM, Thompson JF, Yang LY, Estrada EY, Yang Y. 2015. “Attenuation of acute stroke injury in rat brain by minocycline promotes blood-brain barrier remodeling and alternative microglia/macrophage activation during recovery.” J Neuroinflammation 12: 26. doi: 10.1186/s12974-015-0245-4.
  • Singleton RH, Yan HQ, Fellows‐Mayle W, Dixon CE. 2010. “Resveratrol attenuates behavioral impairments and reduces cortical and hippocampal loss in a rat controlled cortical impact model of traumatic brain injury.” J Neurotrauma 27 (6): 1091–99. doi: 10.1089/neu.2010.1291.
  • Simon DW, McGeachy MJ, Bayir H, Clark RS, Loane DJ, Kochanek PM. 2017. “The far-reaching scope of neuroinflammation after traumatic brain injury.” Nat Rev Neurol 13 (3): 171–91. doi: 10.1038/nrneurol.2017.13.
  • Shultz SR, Sun M, Wright DK, Brady RD, Liu S, Beynon S, Schmidt SF, Kaye AH, Hamilton JA, O’Brien TJ, et al. 2015. “Tibial fracture exacerbates traumatic brain injury outcomes and neuroinflammation in a novel mouse model of multitrauma.” J Cereb Blood Flow Metab 35 (8): 1339–47. doi: 10.1038/jcbfm.2015.56.
  • Shultz SR, Tan XL, Wright DK, Liu SJ, Semple BD, Johnston L, Jones NC, Cook AD, Hamilton JA, O’Brien TJ. 2014. “Granulocyte-macrophage colony-stimulating factor is neuroprotective in experimental traumatic brain injury.” J Neurotrauma 31 (10): 976–83. doi: 10.1089/neu.2013.3106.
  • Hamm RJ, Pike BR, O’Dell DM, Lyeth BG, Jenkins LW. 1994. “The rotarod test: an evaluation of its effectiveness in assessing motor deficits following traumatic brain injury.” J Neurotrauma 11 (2): 187–96. doi: 10.1089/neu.1994.11.187.
  • Johnstone VP, Wright DK, Wong K, O’Brien TJ, Rajan R, Shultz SR. 2015. “Experimental Traumatic Brain Injury Results in Long-Term Recovery of Functional Responsiveness in Sensory Cortex but Persisting Structural Changes and Sensorimotor, Cognitive, and Emotional Deficits.” J Neurotrauma 32 (17): 1333–46. doi: 10.1089/neu.2014.3785.
  • Sofroniew MV, Howe CL, Mobley WC. 2001. “Nerve growth factor signaling, neuroprotection, and neural repair.” Annu Rev Neurosci 24: 1217–81. doi: 10.1146/annurev.neuro.24.1.1217.
  • Shah AG, Friedman MJ, Huang S, Roberts M, Xj L, Li S. 2009. “Transcriptional dysregulation of TrkA associates with neurodegeneration in spinocerebellar ataxia type 17.” Hum Mol Genet 18 (21): 4141–52. doi: 10.1093/hmg/ddp363.
  • Li S, Kuroiwa T, Ishibashi S, Sun L, Endo S, Ohno K. 2006. “Transient cognitive deficits are associated with the reversible accumulation of amyloid precursor protein after mild traumatic brain injury.” Neurosci Lett 409 (3): 182–86. doi: 10.1016/j.neulet.2006.09.054.
  • Young J, Pionk T, Hiatt I, Geeck K, Smith JS. 2015. “Environmental enrichment aides in functional recovery following unilateral controlled cortical impact of the forelimb sensorimotor area however intranasal administration of nerve growth factor does not.” Brain Res Bull 115: 17–22. doi: 10.1016/j.brainresbull.2015.04.003.
  • Shultz SR, Wright DK, Zheng P, Stuchbery R, Liu SJ, Sashindranath M, Medcalf RL, Johnston LA, Hovens CM, Jones NC, et al. 2015. “Sodium selenate reduces hyperphosphorylated tau and improves outcomes after traumatic brain injury.” Brain 138 (Pt 5): 1297–313. doi: 10.1093/brain/awv053.
  • Bao F, Shultz SR, Hepburn JD, Omana V, Weaver LC, Cain DP, Brown A. 2012. “A CD11d monoclonal antibody treatment reduces tissue injury and improves neurological outcome after fluid percussion brain injury in rats.” J Neurotrauma 29 (14): 2375–92. doi: 10.1089/neu.2012.2408.
  • Shultz SR, MacFabe DF, Foley KA, Taylor R, Cain DP. 2012. “Sub-concussive brain injury in the Long-Evans rat induces acute neuroinflammation in the absence of behavioral impairments.” Behav Brain Res 229 (1): 145–52. doi: 10.1016/j.bbr.2011.12.015.
  • Dietrich WD, Truettner J, Zhao W, Alonso OF, Busto R, Ginsberg MD. 1999. “Sequential changes in glial fibrillary acidic protein and gene expression following parasagittal fluid-percussion brain injury in rats.” J Neurotrauma 16 (7): 567–81. doi: 10.1089/neu.1999.16.567.
  • Rall JM, Matzilevich DA, Dash PK. 2003. “Comparative analysis of mRNA levels in the frontal cortex and the hippocampus in the basal state and in response to experimental brain injury.” Neuropathol Appl Neurobiol 29 (2): 118–31. doi: 10.1046/j.1365-2990.2003.00439.x.
  • Bi F, Huang C, Tong J, Qiu G, Huang B, Wu Q, Li F, Xu Z, Bowser R, Xia XG, et al. 2013. “Reactive astrocytes secrete lcn2 to promote neuron death.” Proc Natl Acad Sci U S A 110 (10): 4069–74. doi: 10.1073/pnas.1218497110.
  • Wu L, Du Y, Lok J, Lo EH, Xing C. 2015. “Lipocalin-2 enhances angiogenesis in rat brain endothelial cells via reactive oxygen species and iron-dependent mechanisms.” J Neurochem 132 (6): 622–28. doi: 10.1111/jnc.13023.
  • Lee S, Jha MK, Suk K. 2015. “Lipocalin-2 in the Inflammatory Activation of Brain Astrocytes.” Crit Rev Immunol 35 (1): 77–84. doi: 10.1615/CritRevImmunol.2015012127.
  • Suk K. 2016. “Lipocalin-2 as a therapeutic target for brain injury: an astrocentric perspective.” Prog Neurobiol 144: 158–72. doi: 10.1016/j.pneurobio.2016.08.001.
  • Kao TH, Peng YJ, Salter DM, Lee HS. 2015. “Nerve growth factor increases MMP9 activity in annulus fibrosus cells by upregulating lipocalin 2 expression.” Eur Spine J 24 (9): 1959–68. doi: 10.1007/s00586-014-3675-2.
  • Rink A, Fung KM, Trojanowski JQ, Lee VM, Neugebauer E, McIntosh TK. 1995. “Evidence of apoptotic cell death after experimental traumatic brain injury in the rat.” Am J Pathol 147(6): 1575–83.
  • Raghupathi R, Graham DI, McIntosh TK. 2000. “Apoptosis after traumatic brain injury.” J Neurotrauma 17 (10): 927–38. doi: 10.1089/neu.2000.17.927.
  • Conti AC, Raghupathi R, Trojanowski JQ, McIntosh TK. 1998. “Experimental brain injury induces regionally distinct apoptosis during the acute and delayed post-traumatic period.” J Neurosci 18(15): 5663–72.
  • Yakovlev AG, Knoblach SM, Fan L, Fox GB, Goodnight R, Faden AI. 1997. “Activation of CPP32-like caspases contributes to neuronal apoptosis and neurological dysfunction after traumatic brain injury.” J Neurosci 17(19): 7415–24.
  • Yakovlev AG, Ota K, Wang G, Movsesyan V, Bao WL, Yoshihara K, Faden AI. 2001. “Differential expression of apoptotic protease-activating factor-1 and caspase-3 genes and susceptibility to apoptosis during brain development and after traumatic brain injury.” J Neurosci 21(19): 7439–46.
  • Beer R, Franz G, Srinivasan A, Hayes RL, Pike BR, Newcomb JK, Zhao X, Schmutzhard E, Poewe W, Kampfl A. 2000. “Temporal profile and cell subtype distribution of activated caspase-3 following experimental traumatic brain injury.” J Neurochem 75 (3): 1264–73. doi: 10.1046/j.1471-4159.2000.0751264.x.
  • Thompson SN, Gibson TR, Thompson BM, Deng Y, Hall ED. 2006. “Relationship of calpain-mediated proteolysis to the expression of axonal and synaptic plasticity markers following traumatic brain injury in mice.” Exp Neurol 201 (1): 253–65. doi: 10.1016/j.expneurol.2006.04.013.
  • Hulsebosch CE, DeWitt DS, Jenkins LW, Prough DS. 1998. “Traumatic brain injury in rats results in increased expression of Gap-43 that correlates with behavioral recovery.” Neurosci Lett 255 (2): 83–86. doi: 10.1016/S0304-3940(98)00712-5.
  • Falo MC, Reeves TM, Phillips LL. 2008. “Agrin expression during synaptogenesis induced by traumatic brain injury.” J Neurotrauma 25 (7): 769–83. doi: 10.1089/neu.2008.0511.
  • Hall KD, Lifshitz J. 2010. “Diffuse traumatic brain injury initially attenuates and later expands activation of the rat somatosensory whisker circuit concomitant with neuroplastic responses.” Brain Res 1323: 161–73. doi: 10.1016/j.brainres.2010.01.067.
  • Ding JY, Kreipke CW, Schafer P, Schafer S, Speirs SL, Rafols JA. 2009. “Synapse loss regulated by matrix metalloproteinases in traumatic brain injury is associated with hypoxia inducible factor-1alpha expression.” Brain Res 1268: 125–34. doi: 10.1016/j.brainres.2009.02.060.
  • Benowitz LI, Routtenberg A. 1997. “GAP-43: an intrinsic determinant of neuronal development and plasticity.” Trends Neurosci 20(2): 84–91.
  • Chin LS, Li L, Ferreira A, Ks K, Greengard P. 1995. “Impairment of axonal development and of synaptogenesis in hippocampal neurons of synapsin I-deficient mice.” Proc Natl Acad Sci U S A 92 (20): 9230–34. doi: 10.1073/pnas.92.20.9230.
  • Garofalo L, Ribeiro-da-Silva A, Cuello AC. 1992. “Nerve growth factor-induced synaptogenesis and hypertrophy of cortical cholinergic terminals.” Proc Natl Acad Sci U S A 89 (7): 2639–43. doi: 10.1073/pnas.89.7.2639.
  • Burgos I, Cuello AC, Liberini P, Pioro E, Masliah E. 1995. “NGF-mediated synaptic sprouting in the cerebral cortex of lesioned primate brain.” Brain Res 692 (1–2): 154–60. doi: 10.1016/0006-8993(95)00696-N.
  • Tuszynski MH, Sang H, Yoshida K, Fh G. 1991. “Recombinant human nerve growth factor infusions prevent cholinergic neuronal degeneration in the adult primate brain.” Ann Neurol 30 (5): 625–36. doi: 10.1002/ana.410300502.
  • Wieloch T, Nikolich K. 2006. “Mechanisms of neural plasticity following brain injury.” Curr Opin Neurobiol 16 (3): 258–64. doi: 10.1016/j.conb.2006.05.011.
  • Nudo RJ. 2003. “Adaptive plasticity in motor cortex: implications for rehabilitation after brain injury.” J Rehabil Med 41: 7–10. doi: 10.1080/16501960310010070.
  • Conte V, Raghupathi R, Watson DJ, Fujimoto S, Royo NC, Marklund N, Stocchetti N, McIntosh TK. 2008. “TrkB gene transfer does not alter hippocampal neuronal loss and cognitive deficits following traumatic brain injury in mice.” Restor Neurol Neurosci 26(1): 45–56.
  • Oyesiku NM, Evans CO, Houston S, Darrell RS, Smith JS, Fulop ZL, Dixon CE, Stein DG. 1999. “Regional changes in the expression of neurotrophic factors and their receptors following acute traumatic brain injury in the adult rat brain.” Brain Res 833 (2): 161–72. doi: 10.1016/S0006-8993(99)01501-2.
  • O’Dell DM, Raghupathi R, Crino PB, Eberwine JH, McIntosh TK. 2000. “Traumatic brain injury alters the molecular fingerprint of TUNEL-positive cortical neurons In vivo: A single-cell analysis.” J Neurosci 20(13): 4821–28.
  • Cekic M, Johnson SJ, Bhatt VH, Stein DG. 2012. “Progesterone treatment alters neurotrophin/proneurotrophin balance and receptor expression in rats with traumatic brain injury.” Restor Neurol Neurosci 30(2): 115–26.
  • Alder J, Fujioka W, Lifshitz J, Crockett DP, Thakker-Varia S. 2011. “Lateral fluid percussion: model of traumatic brain injury in mice.” J Vis Exp 22(54). pii: 3063. doi:10.3791/3063.
  • Tian L, Guo R, Yue X, Lv Q, Ye X, Wang Z, Chen Z, Wu B, Xu G, Liu X. 2012. “Intranasal administration of nerve growth factor ameliorate beta-amyloid deposition after traumatic brain injury in rats.” Brain Res 1440: 47–55. doi: 10.1016/j.brainres.2011.12.059.
  • Lin HW, Saul I, Gresia VL, Neumann JT, Dave KR, Perez-Pinzon MA. 2014. “Fatty acid methyl esters and Solutol HS 15 confer neuroprotection after focal and global cerebral ischemia.” Transl Stroke Res 5 (1): 109–17. doi: 10.1007/s12975-013-0276-z.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.