553
Views
10
CrossRef citations to date
0
Altmetric
Articles

Methylphenidate-mediated motor control network enhancement in patients with traumatic brain injury

, , , , , , & show all
Pages 1040-1049 | Received 25 Jul 2017, Accepted 22 Apr 2018, Published online: 08 May 2018

References

  • Lemon RN. Descending pathways in motor control. Annual Review of Neuroscience. 2008;31:195–218. doi:10.1146/annurev.neuro.31.060407.125547.
  • Frey SH, Fogassi L, Grafton S, Picard N, Rothwell JC, Schweighofer N, Corbetta M, Fitzpatrick SM. Neurological principles and rehabilitation of action disorders: computation, anatomy and physiology. CAP) model. Neurorehabil Neural Repair. 2011;25(5 Suppl):6S–20S. doi:10.1177/1545968311410940.
  • Bastian AJ. Learning to predict the future: the cerebellum adapts feedforward movement control. Curr Opin Neurobiol. 2006;16:645–49. doi:10.1016/j.conb.2006.08.016.
  • Kuypers HGJM. Anatomy of the descending pathways. In: Brookhart JM, Mountcastle VB, Brooks VB, Geiger SR, Eds. Handbook of physiology. Baltimore: Williams and Wilkins; 1981.
  • Meadows L, Williams J. An understanding of functional movement as a basis for clinical reasoning. In: Raine S, Meadows L, Lynch-Ellerington M, Eds. Bobath concept: theory and clinical practice in neurological rehabilitation. Chichester: Wiley-Blackwell; 2009.
  • Jang SH. Review of motor recovery in patients with traumatic brain injury. NeuroRehabilitation. 2009;24:349–53.
  • Leunissen I, Coxon JP, Caeyenberghs K, Michiels K, Sunaert S, Swinnen SP. Subcortical volume analysis in traumatic brain injury: the importance of the fronto-striato-thalamic circuit in task switching. Cortex. 2014;51:67–81. doi:10.1016/j.cortex.2013.10.009.
  • Kasahara M, Menon DK, Salmond CH, Outtrim JG, Taylor Tavares JV, Carpenter TA, Pickard JD, Sahakian BJ, Stamatakis EA. Altered functional connectivity in the motor network after traumatic brain injury. Neurology. 2010;75:168–76. doi:10.1212/WNL.0b013e3181e7ca58.
  • Caeyenberghs K, Leemans A, Coxon J, Leunissen I, DriiKoningen D, Geurts M, Gooijers J, Michiels K, Sunaert S, Swinnen SP. Bimanual coordination and corpus callosum microstructure in young adults with traumatic brain injury: a diffusion tensor imaging study. J Neurotrauma. 2011;28:897–913. doi:10.1089/neu.2010.1721.
  • Chang MC, Jang SH. Corpus callosum injury in patients with diffuse axonal injury: a diffusion tensor imaging study. NeuroRehabilitation. 2010;26:339–45.
  • Newcombe V, Chatfield D, Outtrim J, Vowler S, Manktelow A, Cross J, Scoffings D, Coleman M, Huchinson P, Coles J, et al. Mapping traumatic axonal injury using diffusion tensor imaging: correlations with functional outcome. PLoS One. 2011;6:e19214. doi:10.1371/journal.pone.0019214.
  • Berlingeri M, Danelli L, Bottini G, Sberna M, Paulesu E. Reassessing the HAROLD model: is the hemispheric asymmetry reduction in older adults a special case of compensatory-related utilisation of neural circuits? Exp Brain Res. 2013;224:393–410. doi:10.1007/s00221-012-3319-x.
  • Cabeza R. Hemispheric asymmetry reduction in older adults: the HAROLD model. Psychol Aging. 2002;17:85–100. doi:10.1037/0882-7974.17.1.85.
  • Calautti C, Naccarato M, Ps J, Sharma N, Day DD, Carpenter AT, Bullmore ET, Warburton EA, Jc B. The relationship between motor deficit and hemisphere activation balance after stroke: A 3T fMRI study. Neuroimage. 2007;34:322–31. doi:10.1016/j.neuroimage.2006.08.026.
  • Calautti C, Ps J, Naccarato M, Sharma N, Day DJ, Bullmore ET, Warburton EA, Baron JC. The relationship between motor deficit and primary motor cortex hemispheric activation balance after stroke: longitudinal fMRI study. J Neurol Neurosurg Psychiatry. 2010;81:788–92. doi:10.1136/jnnp.2009.190512.
  • Ramlackhansingh AF, Brooks DJ, Greenwood RJ, Bose SK, Turkheimer FE, Kinnunen KM, Gentleman S, Heckemann RA, Gunanayagam K, Gelosa G, et al. Inflammation after trauma: microglial activation and traumatic brain injury. Ann Neurol. 2011;70:374–83. doi:10.1002/ana.v70.3.
  • Potts MB, Adwanikar H, Noble-Haeusslein LJ. Models of traumatic cerebellar injury. Cerebellum. 2009;8:211–21. doi:10.1007/s12311-009-0114-8.
  • Friston KJ. Functional and effective connectivity: a review. Brain Connect. 2011;1:13–36. doi:10.1089/brain.2011.0008.
  • Faraone SV, Spencer T, Aleardi M, Pagano C, Biederman J. Meta-analysis of the efficacy of methylphenidate for treating adult attention-deficit/hyperactivity disorder. J Clin Psychopharmacol. 2004;24:24–29. doi:10.1097/01.jcp.0000108984.11879.95.
  • Plenger PM, Dixon CE, Castillo RM, Frankowski RF, Yablon SA, Levin HS. Subacute methylphenidate treatment for moderate to moderately severe traumatic brain injury: a preliminary double-blind placebo-controlled. Arch Phys Med Rehabil. 1996;77:536–40. doi:10.1016/S0003-9993(96)90291-9.
  • Tardy J, Pariente J, Leger A, Dechaumont-Palacin S, Gerdelat A, Guiraud V, Conchou F, Albucher JF, Marque P, Franceries X, et al. Methylphenidate modulates cerebral post-stroke reorganization. Neuroimage. 2006;33:913–22. doi:10.1016/j.neuroimage.2006.07.014.
  • Coull JT, Frith CD. Frackowiak RSJ and Grasby PM. fronto-parietal network for rapid visual information processing: a PET study of sustained attention and working memory. Neuropsychologia. 1996;34:1085–95. doi:10.1016/0028-3932(96)00029-2.
  • Sanchez-Carrion R, Fernandez-Espejo D, Junque C, Falcon C, Bargallo N, Roig T, Bernabeu M, Tormos JM, Vendrell P. A longitudinal fMRI study of working memory in severe TBI patients with diffuse axonal injury. Neuroimage. 2008;43:421–29. doi:10.1016/j.neuroimage.2008.08.003.
  • Chamberlain SR, Hampshire A, Müller U, Rubia K, Del CN, Craig K, Regenthal R, Suckling J, Roiser JP, Grant JE, et al. Atomoxetine modulates right inferior frontal activation during inhibitory control: a pharmacological functional magnetic resonance imaging study. Biol Psychiatry. 2008;65:550–55. doi:10.1016/j.biopsych.2008.10.014.
  • Cazalis F, Feydy A, Valabrègue R, Pélégrini-Issac M, Pierot L, Azouvi P. fMRI study of problem-solving after severe traumatic brain injury. Brain Injury. 2006;20:1019–28. doi:10.1080/02699050600664384.
  • Manktelow AE, Menon DK, Sahakian BJ, Stamatakis EA. Working memory after traumatic brain injury: the neural basis of improved performance with methylphenidate. Front Behav Neurosci. 2017;11:58. doi:10.3389/fnbeh.2017.00058.
  • Moreno-López L, Manktelow AE, Sahakian BJ, Menon DK, Stamatakis EA. Anything goes? Regulation of the neural processes underlying response inhibition in TBI patients. Eur Neuropsychopharmacol. 2017;27:159–69. doi:10.1016/j.euroneuro.2016.12.002.
  • Grote S, Bocker W, Mutschler W, Bouillon B, Lefering R. Diagnostic value of the glasgow coma scale for traumatic brain injury in 18,002 patients with severe multiple injuries. J Neurotrauma. 2011;28:527–34. doi:10.1089/neu.2010.1433.
  • Sahakian B, Jones G, Levy R, Gray J, Warburton D. The effects of nicotine on attention, information processing, and short-term memory in patients with dementia of the Alzheimer type. Br J Psychiatry. 1989;154:797–800. doi:10.1192/bjp.154.6.797.
  • Stamatakis EA, Shafto MA, Williams G, Tam P, Tyler LK. White matter changes and word finding failures with increasing age. PLoS One. 2011;6:e14496. doi:10.1371/journal.pone.0014496.
  • Friston KJ, Buchel C, Fink GR, Morris J, Rolls E, Dolan RJ. Psychophysiological and modulatory interactions in Neuroimaging. Neuroimage. 1997;6:218–29. doi:10.1006/nimg.1997.0291.
  • Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, Mazoyer B, Joliot M. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage. 2002;15:273–89. doi:10.1006/nimg.2001.0978.
  • Catani M, Thiebaut De Schotten M. A diffusion tensor imaging tractography atlas for virtual in vivo dissections. Cortex. 2008;44:1105–32. doi:10.1016/j.cortex.2008.05.004.
  • Incoccia C, Formisano R, Muscato P, Reali G, Zoccolotti P. Reaction and movement times in individuals with chronic traumatic brain injury with good motor recovery. Cortex. 2004;40:111–15. doi:10.1016/S0010-9452(08)70924-9.
  • Haggard P. Human volition: towards a neuroscience of will. Nat Rev Neurosci. 2008;9:934–46. doi:10.1038/nrn2497.
  • Choi GS, Kim OL, Kim SH, Ahn SH, Son SM, Jang SH. Classification of cause of motor weakness in traumatic brain injury using diffusion tensor imaging. Arch Neurol. 2012;69:363–67. doi:10.1001/archneurol.2011.1930.
  • Kim DG, Kim SH, Kim OL, Cho YW, Son SM, Jang SH. Long-term recovery of motor function in a quadriplegic patient with diffuse axonal injury and traumatic hemorrhage: a case report. NeuroRehabilitation. 2009;25:117–22.
  • Witt ST, Laird AR, Meyerand ME. Functional neuroimaging correlates of finger-tapping task variations: an ALE meta-analysis. Neuroimage. 2008;42:343–56. doi:10.1016/j.neuroimage.2008.04.025.
  • Sakai K, Hikosaka O, Takino R, Miyauchi S, Nielsen M, Tamada T. What and when: parallel and convergent processing in motor control. J Neurosci. 2000;20:2691–700. doi:10.1523/JNEUROSCI.20-07-02691.2000.
  • Hoffstaedter F, Grefkes C, Zilles K, Eickhoff SB. The “what” and “when” of self-initiated movements. Cereb Cortex. 2013;23:520–30. doi:10.1093/cercor/bhr391.
  • Zimmermann KM, Bischoff M, Lorey B, Stark R, Munzert J, Zentgraf K. Neural correlates of switching attentional focus during finger movements: an fMRI study. Front Psychol. 2012;3:555. doi:10.3389/fpsyg.2012.00555.
  • Vaillancourt DE, Mayka MA, Corcos DM. Intermittent visuomotor processing in the human cerebellum, parietal cortex, and premotor cortex. J Neurpphysiol. 2006;95:922–31. doi:10.1152/jn.00718.2005.
  • Seghier ML. The angular gyrus: multiple functions and multiple subdivisions. Neuroscientist. 2013;19:43–61. doi:10.1177/1073858412440596.
  • Rothwell JC, Traub MM, Day BL, Obeso JA, Thomas PK, Marsden CD. Manual motor performance in a deafferented man. Brain. 1982;105:515–42. doi:10.1093/brain/105.3.515.
  • Rausch M, Spengler F, Eysel UT. Proprioception acts as the main source of input in human S-I activation experiments: a functional MRI study. Neuroreport. 1998;9:2865–68. doi:10.1097/00001756-199808240-00034.
  • Solodkin A, Hlustik P, Noll DC, Small SL. Lateralization of motor circuits and handedness during finger movements. Eur J Neurol. 2001;8:425–34. doi:10.1046/j.1468-1331.2001.00242.x.
  • Cui SZ, Li EZ, Zang YF, Weng XC, Ivry R, Wang JJ. Both sides of human cerebellum involved in preparation and execution of sequential movements. Neuroreport. 2000;11:3849–53. doi:10.1097/00001756-200011270-00049.
  • Haaland KY, Elsinger CL, Mayer AR, Durgerian S, Rao SM. Motor sequence complexity and performing hand produce differential patterns of hemispheric lateralization. J Cogn Neurosci. 2004;16:621–36. doi:10.1162/089892904323057344.
  • Volkow ND, Wang GJ, Fowler JS, Telang F, Maynard L, Logan J, Gatley SJ, Pappas N, Wong C, Vaska P, et al. Evidence that methylphenidate enhances the saliency of a mathematical task by increasing dopamine in the human brain. Am J Psychiatry. 2004;161:1178–80. doi:10.1176/appi.ajp.161.7.1173.
  • Abe M, Schambra H, Wassermann EM, Luckenbaugh D, Schweighofer N, Cohen LG. Reward improves long-term retention of a motor memory through induction of offline memory gains. Curr Biol. 2011;21:557–62. doi:10.1016/j.cub.2011.02.030.
  • Villamar MF, Santos Portilla A, Fregni F, Zafonte R. Noninvasive brain stimulation to modulate neuroplasticity in traumatic brain injury. Neuromodulation. 2012;15:326–38. doi:10.1111/j.1525-1403.2012.00474.x.
  • Wiese H, Tonnes C, De Greiff A, Nebel K, Diener H-C, Stude P. Self-initiated movements in chronic prefrontal traumatic brain injury: an event-related MRI study. Neuroimage. 2006;30:1292–301. doi:10.1016/j.neuroimage.2005.11.012.
  • Numminen HJ. The incidence of traumatic brain injury in an adult population–how to classify mild cases? Eur J Neurol. 2011;18:460–64. doi:10.1111/j.1468-1331.2010.03179.x.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.