489
Views
28
CrossRef citations to date
0
Altmetric
Articles

Fluid–structure interaction analysis of cerebrospinal fluid with a comprehensive head model subject to a rapid acceleration and deceleration

&
Pages 1576-1584 | Received 30 Nov 2017, Accepted 16 Jul 2018, Published online: 30 Jul 2018

References

  • Morrison AL, King TM, Korell MA, Smialek JE, Troncosso JC. Acceleration deceleration injuries to the brain in blunt force trauma. Am J Forensic Med Pathol. 1998;19:109–12. doi:10.1097/00000433-199806000-00002.
  • Poirier MP. Concussions: assessment, management, and recommendations for return to activity. Clin Pediatr Emerg Med. 2003;4:179–85. doi:10.1016/S1522-8401(03)00061-2.
  • Shonauer M, Schisano G, Cimino R, Viola L. Space occupying contusions of cerebral lobes after closed brain injury: considerations about 51 cases. J Neurosurg Sci. 1979;23:279–88.
  • Bailes JE, Hudson V. Classification of sport-related head trauma: a spectrum of mild to severe injury. J Athletic Training. 2001;36:236–43.
  • Shaw NA. The neurophysiology of concussion. Prog Neurobiol. 2002;67:281–344.
  • Linninger AA, Tangen K, Hsu CY, Frim D. Cerebrospinal fluid mechanics and its coupling to cerebrovascular dynamics. Annu Rev Fluid Mech. 2016;48:219–57. doi:10.1146/annurev-fluid-122414-034321.
  • Vorwerk J, Clerc M, Burger M, Wolters CH. Comparison of boundary element and finite element approaches to the EEG forward problem. Biomed Eng/Biomedizinische Technik. 2012;57:795–98.
  • Luo Y, Li Z, Chen H. Finite-element study of cerebrospinal fluid in mitigating closed head injuries. J Eng Medicine. 2012;226:499–509. doi:10.1177/0954411912445729.
  • Chafi MS, Dirisala V, Karami G, Ziejewski M. A finite element method parametric study of the dynamic response of the human brain with different cerebrospinal fluid constitutive properties. Proc Institution Mechanical Engineers, H: J Eng Med. 2009;223:1003–19. doi:10.1243/09544119JEIM631.
  • Liang Z, Luo Y. A QCT-based Nonsegmentation finite element head model for studying traumatic brain injury. Appl Bionics Biomech. 2015;2015:1–8. doi:10.1155/2015/837585.
  • Bei L, Shijie R, Haiyan L, Shihai C, Lijuan H The effects of different mesh density of the cerebrospinal fluid on the dynamic responses of a 6 years old child finite element head Model in Eighth International Conference on Measuring Technology and Mechatronics Automation (ICMTMA):756–67 2016.
  • Tangen KM, Hsu CY, Zhu DC, Linninger AA. CNS wide simulation of flow resistance and drug transport dur to spinal microanatomy. J Biomech. 2015;48(10):2144–54. doi:10.1016/j.jbiomech.2015.02.018.
  • Hsu CY, Schneller B, Alaraj A, Flannery M, Zhou XJ, Linninger AA. Automatic recognition of subject-specific cerebrovascular trees. Magn Resonan Med. 2016;77(1):398–410. doi:10.1002/mrm.26087.
  • Ghaffari M, Tangen KM, Alaraj A, Du X, Charbel FT, Linninger AA. Large-scale subject-specific cerebral arterial tree modeling using automated parametric mesh generation for blood flow simulation. Comput Biol Med. 2017;91:353–65. doi:10.1016/j.compbiomed.2017.10.028.
  • Brodmann K. Vergleichende Lokalisationslehre der Grosshirnrinde (in German). Leipzig: Johann Ambrosius Barth; 1909.
  • Limited TCT Research. Ed. Cortical Functions. Trans Cranial Technologies ldt; 2012. Wanchai, Hongkong.
  • Ho J, Kleiven S. Dynamic response of the brain with vasculature: a three dimensional computational study. J Biomech. 2007;40:3006–12. doi:10.1016/j.jbiomech.2007.02.011.
  • Chen Y, Ostoja-Starzewski M. MRI-based finite element modeling of head trauma: spherically focusing shear waves. Acta Mech. 2010;213:155–67. doi:10.1007/s00707-009-0274-0.
  • Watanabe D, Yuge K, Nishimoto T, Murakami S, Takao H. Impact injury analysis of the human head. AutoTechnol. 2007;7:34–37.
  • Madhukar A, Chen Y, Ostoja-Starzewski M. Effect of cerebrospinal fluid modelling on spherically convergent shear waves during blunt head trauma. Int J Numer Meth Biomed Engng. 2017. doi:10.1002/cnm.2881.
  • Toma M, Njilie FEA, Ghajari M, Galvaneto U. Assessing motorcycle crash related head injuries using finite element simulations. Int J Simul Model. 2010;9:143–51. doi:10.2507/IJSIMM09(3)3.164.
  • GrabCAD Community. [ Accessed 2018 Feb 1]. https://grabcad.com/library
  • Battal B, Kocaoglu M, Bulakbasi N, Husmen G, Sanal HT, Tayfun C. Cerebrospinal fluid flow imaging by using phase-contrast MR technique. Br J Radiol. 2011;84(1004):758–65. doi:10.1259/bjr/66206791.
  • Fry FJ, Barger JE. Acoustical properties of the human skull. J Acoust Soc Am. 1978;63:1576–90.
  • Tyler WJ. The mechanobiology of brain function. Nat Rev Neuro- Sci. 2012;13:867–78. doi:10.1038/nrn3383.
  • Barser TW, Brockway JA, Higgins LS. The density of tissues in and about the head. Acta Neurol Scandinav. 1970;46:85–92. doi:10.1111/j.1600-0404.1970.tb05606.x.
  • Elkin BS, Azeloglu EU, Costa KD, Morrison B. Mechanical heterogeneity of the rat hippicampus measured by atomic force microscope indentation. J Neurotrauma. 2007;24(5):812-22.
  • Gefen A, Gefen N, Zhu Q, Raghupathi R, Margulies SS. Age-dependent changes in material properties of the brain and braincase of the rat. J Neurotrauma. 2003;20:1163–77. doi:10.1089/089771503770802853.
  • Kruse SA, Rose GH, Glaser KJ, Manduca A, Felmlee JP, Jack CR Jr, Ehman RL. Magnetic resonance elastography of the brain. Neuroimage. 2008;39:231–37. doi:10.1016/j.neuroimage.2007.08.030.
  • Moore SW, Sheetz MP. Biophysics of substrate interaction: influence on neutral motility, differentiation, and repair. Dev Neurobiol. 2011;71:1090–101. doi:10.1002/dneu.20947.
  • Lui AC, Polis TZ, Cicutti NJ. Densities of cerebrospinal fluid and spinal anaesthetic solutions in surgical patients at body temperature. Can J Anaesth. 1998;45:297–303. doi:10.1007/BF03012018.
  • Toma M. The emerging use of SPH in biomedical applications. Signific of Bioengg & Biosci. 2017;1(1):SBB.000502.
  • Liu GR, Liu MB. Smoothed particle hydrodynamics: a meshfree particle method. World Scientific. 2003. https://doi.org/10.1142/5340.
  • Toma M, Einstein DR, Bloodworth CH, Cochran RP, Yoganathan AP, Kunzelman KS. Fluid–structure interaction and structural analyses using a comprehensive mitral valve model with 3D chordal structure. Int J Numer Meth Biomed Engng. 2016;33:4. https://doi.org/10.1002/cnm.2815
  • Toma M, Oshima M, Takagi S. Decomposition and parallelization of strongly coupled fluid–structure interaction linear subsystems based on the Q1/P0 discretization. Comput Struct. 2016;173:84–94. doi:10.1016/j.compstruc.2016.06.001.
  • Ghajari M, Hellyer PJ, Sharp DJ. Computational modelling of traumatic brain injury predicts the location of chronic traumatic encelophalopathy pathology. Brain. 2017;140(2):333–43. doi:10.1093/brain/aww317.
  • Sweetman B, Xenos M, Zitella L, Linnger AA. Three-dimensional computational prediction of cerebrospinal fluid flow in the human brain. Comput Biol Med. 2011;41(2):67–75. doi:10.1016/j.compbiomed.2010.12.001.
  • Linninger AA, Somayaji MR, Erickson T, Guo X, Penn RD. Computational methods for predicting drug transport in anisotropic and heterogeneous brain tissue. J Biomech. 2008;41:2176–87. doi:10.1016/j.jbiomech.2008.04.025.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.