176
Views
5
CrossRef citations to date
0
Altmetric
Articles

Metal chaperones: a novel therapeutic strategy for brain injury?

, , , , , , & show all
Pages 305-312 | Received 24 May 2018, Accepted 16 Nov 2018, Published online: 03 Dec 2018

References

  • Maas AI, Stocchetti N, Bullock R. Moderate and severe traumatic brain injury in adults. The Lancet Neurol. 2008;7:728–41. doi:10.1016/S1474-4422(08)70164-9.
  • Roozenbeek B, Maas AI, Menon DK. Changing patterns in the epidemiology of traumatic brain injury. Nat Rev Neurol. 2013;9:231–36. doi:10.1038/nrneurol.2013.22.
  • Faul M, Xu L, Wald MM, Coronado V, Dellinger AM. Traumatic brain injury in the United States: national estimates of prevalence and incidence, 2002–2006. Injury Prev. 2010;16:A268–A268. doi:10.1136/ip.2010.029215.951.
  • Portbury SD, Adlard PA. Traumatic brain injury, chronic traumatic encephalopathy, and Alzheimer’s disease: common pathologies potentiated by altered zinc homeostasis. J Alzheimer’s disease: JAD. 2015. doi:10.3233/JAD-143048.
  • Yeiser EC, Lerant AA, Casto RM, Levenson CW. Free zinc increases at the site of injury after cortical stab wounds in mature but not immature rat brain. Neurosci Lett. 1999;277:75–78.
  • Suh SW, Chen JW, Motamedi M, Bell B, Listiak K, Pons NF, Danscher G, Frederickson CJ. Evidence that synaptically-released zinc contributes to neuronal injury after traumatic brain injury. Brain Res. 2000;852:268–73.
  • Choi DW, Koh JY. Zinc and brain injury. Annu Rev Neurosci. 1998;21:347–75. doi:10.1146/annurev.neuro.21.1.347.
  • Koh JY. Zinc and disease of the brain. Mol Neurobiol. 2001;24:99–106. doi:10.1385/MN:24:1-3:099.
  • Lee JY, Kim JH, Palmiter RD, Koh JY. Zinc released from metallothionein-III may contribute to hippocampal CA1 and thalamic neuronal death following acute brain injury. Exp Neurol. 2003;184:337–47.
  • Suh SW, Frederickson CJ, Danscher G. Neurotoxic zinc translocation into hippocampal neurons is inhibited by hypothermia and is aggravated by hyperthermia after traumatic brain injury in rats. J Cerebral Blood Flow Metabol: Off J Int Soc Cerebral Blood Flow Metabol. 2006;26:161–69. doi:10.1038/sj.jcbfm.9600176.
  • Hellmich HL, Eidson KA, Capra BA, Garcia JM, Boone DR, Hawkins BE, Uchida T, DeWitt DS, Prough DS. Injured Fluoro-Jade-positive hippocampal neurons contain high levels of zinc after traumatic brain injury. Brain Res. 2007;1127:119–26. doi:10.1016/j.brainres.2006.09.094.
  • Hellmich HL, Frederickson CJ, DeWitt DS, Saban R, Parsley MO, Stephenson R, Velasco M, Uchida T, Shimamura M, Prough DS. Protective effects of zinc chelation in traumatic brain injury correlate with upregulation of neuroprotective genes in rat brain. Neurosci Lett. 2004;355:221–25.
  • Sun KJ, Zhu L, Wang HD, Ji XJ, Pan H, Chen M, Lu TJ, Fan YW, Cheng HL, Hang CH, et al. Zinc as mediator of ubiquitin conjugation following traumatic brain injury. Brain Res. 2013;1506:132–41. doi:10.1016/j.brainres.2013.02.011.
  • Hellmich HL, Eidson K, Cowart J, Crookshanks J, Boone DK, Shah S, Uchida T, DeWitt DS, Prough DS. Chelation of neurotoxic zinc levels does not improve neurobehavioral outcorne after traumatic brain injury. Neurosci Lett. 2008;440:155–59. doi:10.1016/j.neulet.2008.05.068.
  • Adlard PA, Parncutt JM, Finkelstein DI, Bush AI. Cognitive loss in zinc transporter-3 knock-out mice: a phenocopy for the synaptic and memory deficits of Alzheimer’s disease? J Neurosci: Off J Soc Neurosci. 2010;30:1631–36. doi:10.1523/JNEUROSCI.5255-09.2010.
  • Yeiser EC, Vanlandingham JW, Levenson CW. Moderate zinc deficiency increases cell death after brain injury in the rat. Nutr Neurosci. 2002;5:345–52. doi:10.1080/1028415021000033811.
  • Cope EC, Morris DR, Scrimgeour AG, Levenson CW. Use of zinc as a treatment for traumatic brain injury in the rat: effects on cognitive and behavioral outcomes. Neurorehabil Neural Repair. 2012;26:907–13. doi:10.1177/1545968311435337.
  • Cope EC, Morris DR, Scrimgeour AG, VanLandingham JW, Levenson CW. Zinc supplementation provides behavioral resiliency in a rat model of traumatic brain injury. Physiol Behav. 2011;104:942–47. doi:10.1016/j.physbeh.2011.06.007.
  • Li Y, Hawkins BE, DeWitt DS, Prough DS, Maret W. The relationship between transient zinc ion fluctuations and redox signaling in the pathways of secondary cellular injury: relevance to traumatic brain injury. Brain Res. 2010;1330:131–41. doi:10.1016/j.brainres.2010.03.034.
  • Frederickson CJ, Maret W, Cuajungco MP. Zinc and excitotoxic brain injury: a new model. Neuroscientist. 2004;10:18–25. doi:10.1177/1073858403255840.
  • Adlard PA, Cherny RA, Finkelstein DI, Gautier E, Robb E, Cortes M, Volitakis I, Liu X, Smith JP, Perez K, et al. Rapid restoration of cognition in Alzheimer’s transgenic mice with 8-hydroxy quinoline analogs is associated with decreased interstitial Abeta. Neuron. 2008;59:43–55. doi:10.1016/j.neuron.2008.06.018.
  • Adlard PA, Bica L, White AR, Nurjono M, Filiz G, Crouch PJ, Donnelly PS, Cappai R, Finkelstein DI, Bush AI. Metal ionophore treatment restores dendritic spine density and synaptic protein levels in a mouse model of Alzheimer’s disease. PLoS ONE. 2011;6. doi:10.1371/journal.pone.0017669.
  • Adlard PA, Bush AI. Metal chaperones: a holistic approach to the treatment of Alzheimer’s disease. Front Psychiatry. 2012;3:15. doi:10.3389/fpsyt.2012.00015.
  • Adlard PA, Sedjahtera A, Gunawan L, Bray L, Hare D, Lear J, Doble P, Bush AI, Finkelstein DI, Cherny RA. A novel approach to rapidly prevent age-related cognitive decline. Aging Cell. 2014;13:351–59. doi:10.1111/acel.12178.
  • Portbury SD, Adlard PA. Zinc signal in brain diseases. Int J Mol Sci. 2017;18:2506. doi:10.3390/ijms18122506.
  • Lever C, Burton S, O’Keefe J. Rearing on hind legs, environmental novelty, and the hippocampal formation. Rev Neurosci. 2006;17:111–33. doi:10.1515/REVNEURO.2006.17.1-2.111.
  • Hamm RJ, Whitegbadebo DM, Lyeth BG, Jenkins LW, Hayes RL. The effect of age on motor and cognitive deficits after traumatic brain injury in rats. Neurosurgery. 1992;31:1072–78.
  • Mouzon BC, Bachmeier C, Ojo JO, Acker CM, Ferguson S, Paris D, Ait-Ghezala G, Crynen G, Davies P, Mullan M, et al. Lifelong behavioral and neuropathological consequences of repetitive mild traumatic brain injury. Ann Clin Transl Neur. 2018;5:64–80. doi:10.1002/acn3.510.
  • Bhowmick S, D’Mello V, Ponery N, Abdul-Muneer PM. Neurodegeneration and sensorimotor deficits in the mouse model of traumatic brain injury. Brain Sci. 2018;8(1). pii: E11. doi: 10.3390/brainsci8010011.
  • Holter SM, Garrett L, Einicke J, Sperling B, Dirscherl P, Zimprich A, Fuchs H, Gailus-Durner V, Hrabe de Angelis M, Wurst W. Assessing cognition in mice. Curr Protoc Mouse Biol. 2015;5:331–58. doi:10.1002/9780470942390.mo150068.
  • Baratz R, Tweedie D, Wang JY, Rubovitch V, Luo WM, Hoffer BJ, Greig NH, Pick CG. Transiently lowering tumor necrosis factor-alpha synthesis ameliorates neuronal cell loss and cognitive impairments induced by minimal traumatic brain injury in mice. J Neuroinflamm. 2015;12:45. doi:10.1186/s12974-015-0237-4.
  • Luo J, Nguyen A, Villeda S, Zhang H, Ding ZQ, Lindsey D, Bieri G, Castellano JM, Beaupre GS, Wyss-Coray T. Long-term cognitive impairments and pathological alterations in a mouse model of repetitive mild traumatic brain injury. Front Neurol. 2014;5. doi:10.3389/fneur.2014.00012.
  • Tucker LB, Fu AH, McCabe JT. Performance of male and female C57BL/6J mice on motor and cognitive tasks commonly used in pre-clinical traumatic brain injury research. J Neurotrauma. 2016;33:880–94. doi:10.1089/neu.2015.3977.
  • Portbury SD, Hare DJ, Finkelstein DI, Adlard PA. Trehalose improves traumatic brain injury-induced cognitive impairment. PLoS ONE. 2017;12:e0183683. doi:10.1371/journal.pone.0183683.
  • Tajiri N, Kellogg SL, Shimizu T, Arendash GW, Borlongan CV. Traumatic brain injury precipitates cognitive impairment and extracellular Abeta aggregation in Alzheimer’s disease transgenic mice. PLoS ONE. 2013;8:e78851. doi:10.1371/journal.pone.0078851.
  • Hamm RJ, Odell DM, Pike BR, Lyeth BG. Cognitive impairment following traumatic brain injury – the effect of pre-injury and postinjury administration of scopolamine and Mk-801. Cognitive Brain Res. 1993;1:223–26. doi:10.1016/0926-6410(93)90006-Q.
  • McInnes K, Friesen CL, MacKenzie DE, Westwood DA, Boe SG. Mild Traumatic Brain Injury (mTBI) and chronic cognitive impairment: a scoping review. PLoS One. 2017; 12(4):e0174847. doi: 10.1371/journal.pone.0174847.
  • Moretti L, Cristofori I, Weaver SM, Chau A, Portelli JN, Grafman J. Cognitive decline in older adults with a history of traumatic brain injury. Lancet Neurol. 2012;11:1103–12. doi:10.1016/S1474-4422(12)70226-0.
  • Rabinowitz AR, Levin HS. Cognitive sequelae of traumatic brain injury. Psychiat Clin N Am. 2014;37:1–11. doi:10.1016/j.psc.2013.11.004.
  • Skandsen T, Finnanger TG, Andersson S, Lydersen S, Brunner JF, Vik A. Cognitive impairment 3 months after moderate and severe traumatic brain injury: a prospective follow-up study. Arch Phys Med Rehabil. 2010;91:1904–13. doi:10.1016/j.apmr.2010.08.021.
  • Lavezzi AM, Corna MF, Matturri L. Neuronal nuclear antigen (NeuN): a useful marker of neuronal immaturity in sudden unexplained perinatal death. J Neurol Sci. 2013;329:45–50. doi:10.1016/j.jns.2013.03.012.
  • Schiff L, Hadker N, Weiser S, Rausch C. A literature review of the feasibility of glial fibrillary acidic protein as a biomarker for stroke and traumatic brain injury. Mol Diagn Ther. 2012;16:79–92. doi:10.2165/11631580-000000000-00000.
  • Mondello S, Jeromin A, Buki A, Bullock R, Czeiter E, Kovacs N, Barzo P, Schmid K, Tortella F, Wang KK, et al. Glial neuronal ratio: a novel index for differentiating injury type in patients with severe traumatic brain injury. J Neurotrauma. 2012;29:1096–104. doi:10.1089/neu.2011.2092.
  • Vos PE, Beems T, Zimmerman C, Biert J, Verbeek M. Glial and neuronal protein serum concentrations reflect primary damage and secondary complications after severe traumatic brain injury. J Neurotrauma. 2004;21:1309–1309.
  • Nylen K, Ost M, Csajbok LZ, Nilsson I, Blennow K, Nellgard B, Rosengren L. Increased serum-GFAP in patients with severe traumatic brain injury is related to outcome. J Neurol Sci. 2006;240:85–91. doi:10.1016/j.jns.2005.09.007.
  • Adlard PA, Bica L, White AR, Nurjono M, Filiz G, Crouch PJ, Donnelly PS, Cappai R, Finkelstein DI, Bush AI. Metal ionophore treatment restores dendritic spine density and synaptic protein levels in a mouse model of Alzheimer’s disease. PLoS ONE. 2011;6:e17669. doi:10.1371/journal.pone.0017669.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.