330
Views
11
CrossRef citations to date
0
Altmetric
Research Article

Plasma PrPC and ADAM-10 as novel biomarkers for traumatic brain injury and concussion: a pilot study

, , , , , & ORCID Icon show all
Pages 734-741 | Received 27 Aug 2020, Accepted 20 Feb 2021, Published online: 24 Mar 2021

References

  • Faul M, Xu L, Wald MM, Coronado VG. Traumatic Brain Injury in the United States: Emergency Department Visits, Hospitalizations and Deaths 2002–2006. Atlanta (GA): Centers for Disease Control and Prevention, National Center for Injury Prevention and Control; 2010
  • Arciniegas DB, Anderson CA, Topkoff J, McAllister TW. Mild traumatic brain injury: a neuropsychiatric approach to diagnosis, evaluation, and treatment. Neuropsychiatr Dis Treat. 2005;1(4):311–27.
  • Byrnes KR, Wilson CM, Brabazon F. FDG-PET imaging in mild traumatic brain injury: a critical review. Front Neuroenergetics. 2013;5:13.
  • Strathmann FG, Schulte S, Goerl K, Petron DJ. Blood-based biomarkers for traumatic brain injury: evaluation of research approaches, available methods and potential utility from the clinician and clinical laboratory perspectives. Clin Biochem. 2014;47(10–11):876–88. doi:10.1016/j.clinbiochem.2014.01.028.
  • Toman E, Harrisson S, Belli T. Biomarkers in traumatic brain injury: a review. J R Army Med Corps. 2016;162(2):103–08. doi:10.1136/jramc-2015-000517.
  • Pham N, Sawyer TW, Wang Y, Jazii FR, Vair C, Taghibiglou C. Primary blast-induced traumatic brain injury in rats leads to increased prion protein in plasma: a potential biomarker for blast-induced traumatic brain injury. J Neurotrauma. 2015;32(1):58–65. doi:10.1089/neu.2014.3471.
  • Pham N, Akonasu H, Shishkin R, Taghibiglou C, Legname G. Plasma soluble prion protein, a potential biomarker for sport-related concussions: a pilot study. PloS One. 2015;10(2):e0117286. doi:10.1371/journal.pone.0117286.
  • Khosravani H, Zhang Y, Tsutsui S, Hameed S, Altier C, Hamid J, Chen L, Villemaire M, Ali Z, Jirik FR. Prion protein attenuates excitotoxicity by inhibiting NMDA receptors. J Cell Biol. 2008;181(3):551–65. doi:10.1083/jcb.200711002.
  • Walz R, Amaral OB, Rockenbach IC, Roesler R, Izquierdo I, Cavalheiro EA, Martins VR, Brentani RR. Increased sensitivity to seizures in mice lacking cellular prion protein. Epilepsia. 1999;40(12):1679–82. doi:10.1111/j.1528-1157.1999.tb01583.x.
  • Weise J, Sandau R, Schwarting S. Deletion of cellular prion protein results in reduced akt activation, enhanced postischemic caspase-3 activation, and exacerbation of ischemic brain injury. Stroke. 2006;37(5):1296–300. doi:10.1161/01.STR.0000217262.03192.d4.
  • Westergard L, Christensen HM, Harris DA. The cellular prion protein (PrP(C)): its physiological function and role in disease. Biochim Biophys Acta. 2007;1772(6):629–44. doi:10.1016/j.bbadis.2007.02.011.
  • Banks WA, Robinson SM, Diaz-Espinoza R. Transport of prion protein across the blood-brain barrier. Exp Neurol. 2009;218(1):162–67. doi:10.1016/j.expneurol.2009.04.025.
  • Parizek P, Roeckl C, Weber J. Similar turnover and shedding of the cellular prion protein in primary lymphoid and neuronal cells. J Biol Chem. 2001;276(48):44627–32. doi:10.1074/jbc.M107458200.
  • Mitsios N, Saka M, Krupinski J. Cellular prion protein is increased in the plasma and peri-infarcted brain tissue after acute stroke. J Neurosci Res. 2007;85(3):602–11. doi:10.1002/jnr.21142.
  • Wang KK, Zoltewicz JS, Chiu A. Release of full-length PrP(C) from cultured neurons following neurotoxic challenges. Front Neurol. 2012;3:147. doi:10.3389/fneur.2012.00147.
  • Altmeppen HC, Prox J, Puig B. Lack of a-disintegrin-and-metalloproteinase ADAM10 leads to intracellular accumulation and loss of shedding of the cellular prion protein in vivo. Mol Neurodegener. 2011;6(1):36. doi:10.1186/1750-1326-6-36.
  • Prado MA, Alves-Silva J, Magalhaes AC. PrPc on the road: trafficking of the cellular prion protein. J Neurochem. 2004;88(4):769–81. doi:10.1046/j.1471-4159.2003.02199.x.
  • Sarnataro D, Caputo A, Casanova P. Lipid rafts and clathrin cooperate in the internalization of PrP in epithelial FRT cells. PloS One. 2009;4(6):e5829. doi:10.1371/journal.pone.0005829.
  • Taylor DR, Parkin ET, Cocklin SL. Role of ADAMs in the ectodomain shedding and conformational conversion of the prion protein. J Biol Chem. 2009;284(34):22590–600. doi:10.1074/jbc.M109.032599.
  • Del Turco D, Schlaudraff J, Bonin M, Deller T. Upregulation of APP, ADAM10 and ADAM17 in the denervated mouse dentate gyrus. PloS One. 2014;9(1):e84962. doi:10.1371/journal.pone.0084962.
  • Phillips LL, Chan JL, Doperalski AE, Reeves TM. Time dependent integration of matrix metalloproteinases and their targeted substrates directs axonal sprouting and synaptogenesis following central nervous system injury. Neural Regen Res. 2014;9(4):362–76. doi:10.4103/1673-5374.128237.
  • Warren KM, Reeves TM, Phillips LL. MT5-MMP, ADAM-10, and N-cadherin act in concert to facilitate synapse reorganization after traumatic brain injury. J Neurotrauma. 2012;29(10):1922–40. doi:10.1089/neu.2012.2383.
  • Rubenstein R, Wang KK, Chiu A. PrP(C) expression and calpain activity independently mediate the effects of closed head injury in mice. Behav Brain Res. Mar. 2018 15;340:29–40. doi:10.1016/j.bbr.2016.04.041.
  • Kural A, Tekin Neijmann S, Toker A, Doğan H, Sever N, Sarıkaya S. Evaluation of rat major cellular prion protein for early diagnosis in experimental rat brain trauma model. Deneysel beyin travması oluşturulan sıçanlarda erken tanı için sellüler prion protein(PrPC)’nin değerlendirilmesi. Ulusal Travma Ve Acil Cerrahi dergisi = Turkish Journal of Trauma & Emergency Surgery : TJTES. 2020;26(1):1‐8. doi:10.5505/tjtes.2018.46923.
  • Zetterberg H, Blennow K. Fluid biomarkers for mild traumatic brain injury and related conditions. Nat Rev Neurol. 2016;12(10):563‐574. doi:10.1038/nrneurol.2016.127.
  • Blennow K, Brody DL, Kochanek PM, Levin H, McKee A, Ribbers GM, Yaffe K, Zetterberg H. Traumatic brain injuries. Nat Rev Dis Primers. 2016;2(1):16084. doi:10.1038/nrdp.2016.84.
  • Costello DM, Kaye AH, O’Brien TJ, Shultz SR. Sport related concussion – potential for biomarkers to improve acute management. Journal of Clinical Neuroscience. 2018;56:1–6. doi:10.1016/j.jocn.2018.07.002.
  • Kim HJ, Tsao JW, Stanfill AG. The current state of biomarkers of mild traumatic brain injury. JCI Insight. 2018 11;3(1). doi:10.1172/jci.insight.97105.
  • Pérez-Bárcena J, Crespí C, Frontera G, Llompart-Pou JA, Salazar O, Goliney V, Ibáñez J, Bullock MR, De Rivero Vaccari JP. Levels of caspase-1 in cerebrospinal fluid of patients with traumatic brain injury: correlation with intracranial pressure and outcome. J Neurosurg. 2020;1‐6. doi:10.3171/2020.2.JNS193079.
  • Ritchie EV, Emery C, Debert CT. Analysis of serum cortisol to predict recovery in paediatric sport-related concussion. Brain Injury. 2018;32(4):523–28. doi:10.1080/02699052.2018.1429662.
  • Kondo A, Shahpasand K, Mannix R, Qiu J, Moncaster J, Chen C-H, Yao Y, Lin Y-M, Driver JA, Sun Y. Antibody against early driver of neurodegeneration cis P-tau blocks brain injury and tauopathy. Nature. 2015;523(7561):431‐436. doi:10.1038/nature14658.
  • McKee AC, Stern RA, Nowinski CJ, Stein TD, Alvarez VE, Daneshvar DH, Lee H-S, Wojtowicz SM, Hall G, Baugh CM. The spectrum of disease in chronic traumatic encephalopathy. Brain. 2013;136(Pt 1):43‐64. doi:10.1093/brain/aws307.
  • Slavoaca D, Muresanu D, Birle C. Biomarkers in traumatic brain injury: new concepts [published online ahead of print, 2020 Mar 10]. Neurol Sci. 2020. doi:10.1007/s1007201904238y.
  • Anderson T, Hwang J, Munar M, Papa L, Hinson HE, Vaughan A, Rowell SE. Blood-based biomarkers for prediction of intracranial hemorrhage and outcome in patients with moderate or severe traumatic brain injury. J Trauma Acute Care Surg. 2020;89(1):80–86. doi:10.1097/TA.0000000000002706.
  • Gayen M, Bhomia M, Balakathiresan N, Knollmann-Ritschel B. Exosomal microRNAs released by activated astrocytes as potential neuroinflammatory biomarkers. Int J Mol Sci. 2020;21(7):2312. doi:10.3390/ijms21072312.
  • Wang P, Ma H, Zhang Y, Zeng R, Yu J, Liu R, Jin X, Zhao Y. Plasma exosome-derived microRNAs as novel biomarkers of traumatic brain injury in rats. Int J Med Sci. 2020;17(4):437–48. doi:10.7150/ijms.39667.
  • O’Brien WT, Pham L, Symons GF, Monif M, Shultz SR, McDonald SJ. The NLRP3 inflammasome in traumatic brain injury: potential as a biomarker and therapeutic target. J Neuroinflammation. 2020;17(1):104. doi:10.1186/s12974-020-01778-5.
  • Hajiaghamemar M, Kilbaugh T, Arbogast KB, Master CL, Margulies SS. Using serum amino acids to predict traumatic brain injury: a systematic approach to utilize multiple biomarkers. Int J Mol Sci. 2020;21(5):1786. doi:10.3390/ijms21051786.
  • Pitkänen A, Paananen T, Kyyriäinen J, Das Gupta S, Heiskanen M, Vuokila N, Bañuelos-Cabrera I, Lapinlampi N, Kajevu N, Andrade P, Ciszek R, Lara-Valderrábano L, Ekolle Ndode-Ekane X, Puhakka N. Biomarkers for posttraumatic epilepsy. Epilepsy Behav 2020 Apr 18;107080. doi:10.1016/j.yebeh.2020.107080
  • Sweeney MD, Sagare AP, Pachicano M, Harrington MG, Joe E, Chui HC, Schneider LS, Montagne A, Ringman JM, Fagan AM. A novel sensitive assay for detection of a biomarker of pericyte injury in cerebrospinal fluid. Alzheimers Dement. 2020;16(6):821–30. doi:10.1002/alz.12061.
  • Fevrier B, Vilette D, Archer F, Loew D, Faigle W, Vidal M, Laude H, Raposo G. Cells release prions in association with exosomes. Proc Natl Acad Sci U S A. 2004;101(26):9683–88. doi:10.1073/pnas.0308413101.
  • Keller S, Sanderson MP, Stoeck A, Altevogt P. Exosomes: from biogenesis and secretion to biological function. Immunol Lett. 2006;107(2):102–08. doi:10.1016/j.imlet.2006.09.005.
  • Robinson BD, Tharakan B, Lomas A, Wiggins-Dohlvik K, Alluri H, Shaji CA, Jupiter D, Isbell CL. Exploring blood-brain barrier hyperpermeability and potential biomarkers in traumatic brain injury. Proc (Bayl Univ Med Cent). 2020;33(2):199–204. doi:10.1080/08998280.2020.1727706.
  • Linsenmeier L, Mohammadi B, Wetzel S, Puig B, Jackson WS, Hartmann A, Uchiyama K, Sakaguchi S, Endres K, Tatzelt J. Structural and mechanistic aspects influencing the ADAM10-mediated shedding of the prion protein. Mol Neurodegener. 2018;13(1):18. doi:10.1186/s13024-018-0248-6.
  • Perez-Gonzalez R, Gauthier SA, Kumar A, Levy E. The exosome secretory pathway transports amyloid precursor protein carboxyl-terminal fragments from the cell into the brain extracellular space. J Biol Chem. 2012;287(51):43108–15. doi:10.1074/jbc.M112.404467.
  • Stoeck A, Keller S, Riedle S, Sanderson M, Runz S, Le Naour F, Gutwein P, Ludwig A, Rubinstein E, Altevogt P. A role for exosomes in the constitutive and stimulus-induced ectodomain cleavage of L1 and CD44. Biochem J. 2006;393(3):609–18. doi:10.1042/BJ20051013.
  • Heisler FF, Pechmann Y, Wieser I, Altmeppen HC, Veenendaal L, Muhia M, Schweizer M, Glatzel M, Krasemann S, Kneussel M. Muskelin coordinates PrPC lysosome versus exosome targeting and impacts prion disease progression. Neuron. 2018;99(6):1155–1169.e9. doi:10.1016/j.neuron.2018.08.010.
  • Janes PW, Saha N, Barton WA, Kolev MV, Wimmer-Kleikamp SH, Nievergall E, Blobel CP, Himanen J-P, Lackmann M, Nikolov DB. Adam meets Eph: an ADAM substrate recognition module acts as a molecular switch for ephrin cleavage in trans. Cell. 2005;123(2):291–304. doi:10.1016/j.cell.2005.08.014.
  • Wetzel S, Seipold L, Saftig P. The metalloproteinase ADAM10: a useful therapeutic target?. Biochim Biophys Acta Mol Cell Res. 2017 Nov;1864(11):2071–81. doi:10.1016/j.bbamcr.2017.06.005.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.