45
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Short-term behavioral and histological findings following a single concussive and repeated subconcussive brain injury in a rodent model

ORCID Icon, , &
Received 19 Mar 2023, Accepted 23 Apr 2024, Published online: 05 May 2024

References

  • Hsieh TH, Kang JW, Lai JH, Huang YZ, Rotenberg A, Chen KY, Wang J-Y, Chan S-Y, Chen S-C, Chiang Y-H, et al. Relationship of mechanical impact magnitude to neurologic dysfunction severity in a rat traumatic brain injury model. PLoS One. 2017;12(5):e0178186. doi:10.1371/journal.pone.0178186
  • Ma X, Aravind A, Pfister BJ, Chandra N, Haorah J. Animal models of traumatic brain injury and assessment of injury severity. Molecular Neurobiology. 2019; Vol. 56, pp. 5332–5345.
  • McNamara EH, Grillakis AA, Tucker LB, McCabe JT. The closed-head impact model of engineered rotational acceleration (CHIMERA) as an application for traumatic brain injury pre-clinical research: a status report. Exp Neurol. 2020;333:113409. doi:10.1016/j.expneurol.2020.113409
  • Bree D, Mackenzie K, Stratton J, Levy D. Enhanced post-traumatic headache-like behaviors and diminished contribution of peripheral CGRP in female rats following a mild closed head injury. Cephalalgia. 2020;40(7): 748–760.
  • Gavett BE, Stern RA, McKee AC. Chronic traumatic encephalopathy: a potential late effect of sport-related concussive and subconcussive head trauma. Clin Sports Med. 2011;30(1):179–88. doi:10.1016/j.csm.2010.09.007
  • McKee AC, Cantu RC, Nowinski CJ, Hedley-Whyte ET, Gavett BE, Budson AE, Santini VE, Lee H-S, Kubilus CA, Stern RA, et al. Chronic traumatic encephalopathy in athletes: progressive tauopathy after repetitive head injury. J Neuropath Exp Neur. 2009;68(7):709–35. doi:10.1097/NEN.0b013e3181a9d503
  • Spiotta AM, Bartsch AJ, Benzel EC. Heading in soccer: dangerous play? Neurosurgery. 2012;70(1):1–11. doi:10.1227/NEU.0b013e31823021b2
  • Stern RA, Riley DO, Daneshvar DH, Nowinski CJ, Cantu RC, McKee AC. Long-term consequences of repetitive brain trauma: chronic traumatic encephalopathy. Pm R. 2011;3(10S2). doi:10.1016/j.pmrj.2011.08.008
  • Talavage TM, Nauman EA, Breedlove EL, Yoruk U, Dye AE, Morigaki KE, LeverenzLarry J. Functionally-detected cognitive impairment in high school football players without clinically-diagnosed concussion. J Neurotrauma. 2014;31(4):327–38. doi:10.1089/neu.2010.1512
  • Bailes JE, Petraglia AL, Omalu BI, Nauman E, Talavage T. Role of subconcussion in repetitive mild traumatic brain injury. J Neurosurg. 2013;119(5):1235–45. doi:10.3171/2013.7.JNS121822
  • Galgano MA, Cantu R, Chin LS. Chronic traumatic encephalopathy: the impact on athletes. Cureus. 2016;8(3). doi:10.7759/cureus.532
  • Prins ML, Alexander D, Giza CC, Hovda DA. Repeated mild traumatic brain injury: mechanisms of cerebral vulnerability. J Neurotrauma. 2013;30(1):30–38. doi:10.1089/neu.2012.2399
  • Safinia C, Bershad EM, Clark HB, SantaCruz K, Alakbarova N, Suarez JI, Divani AA. Chronic traumatic encephalopathy in athletes involved with high-impact sports. J Vasc Interv Neurol. 2016;9(2):34–48.
  • Shurley JP, Todd JS. Boxing lessons: an historical review of chronic head trauma in boxing and football. Kinesiology Rev. 2016;1(3):170–84. doi:10.1123/krj.1.3.170
  • Witcher KG, Eiferman DS, Godbout JP. Priming the inflammatory pump of the CNS after TBI. Trends In Neuroscience. 2015;38(10):609–20. doi:10.1016/j.tins.2015.08.002
  • Fujita M, Wei EP, Povlishock JT. Intensity-and interval-specific repetitive traumatic brain injury can evoke both axonal and microvascular damage. J Neurotrauma. 2012;29(12):2172–80. doi:10.1089/neu.2012.2357
  • Hoogenboom WS, Rubin TG, Ye K, Cui MH, Branch KC, Liu J, Branch CA, Lipton ML. Diffusion tensor imaging of the evolving response to mild traumatic brain injury in rats. J Exp Neurosci. 2019;13:117906951985862.
  • McAteer KM, Corrigan F, Thornton E, Turner RJ, Vink R, Byrnes KR. Short and long term behavioral and pathological changes in a novel rodent model of repetitive mild traumatic brain injury. PLoS One. 2016;11(8):e0160220. doi:10.1371/journal.pone.0160220
  • Petraglia AL, Plog BA, Dayawansa S, Chen M, Dashnaw ML, Czerniecka K, Walker CT, Viterise T, Hyrien O, Iliff JJ, et al. The spectrum of neurobehavioral sequelae after repetitive mild traumatic brain injury: a novel mouse model of chronic traumatic encephalopathy. J Neurotrauma. 2014;31(13):1211–24. doi:10.1089/neu.2013.3255
  • Prins ML, Hales A, Reger M, Giza CC, Hovda DA. Repeat traumatic brain injury in the juvenile rat is associated with increased axonal injury and cognitive impairments. Dev Neurosci. 2010;32(5–6):510–18. doi:10.1159/000316800
  • Shitaka Y, Tran HT, Bennett RE, Sanchez L, Levy MA, Dikranian K, Brody DL. Repetitive closed-skull traumatic brain injury in mice causes persistent multifocal axonal injury and microglial reactivity. J Neuropathol Exp Neurol. 2011;70(7):551–67. doi:10.1097/NEN.0b013e31821f891f
  • Thomsen GM, Ko A, Harada MY, Ma A, Wyss L, Haro P, Vit J-P, Avalos P, Dhillon NK, Cho N, et al. Clinical correlates to assist with chronic traumatic encephalopathy diagnosis: insights from a novel rodent repeat concussion model. J Trauma Acute Care Surg. 2017;82(6):1039–48. doi:10.1097/TA.0000000000001443
  • Bree D, Stratton J, Levy D. Increased severity of closed head injury or repetitive subconcussive head impacts enhances post-traumatic headache-like behaviors in a rat model. Cephalalgia. 2020;40(11): 1224–1239.
  • Rawlings S, Takechi R, Lavender AP. Effects of sub-concussion on neuropsychological performance and its potential mechanisms: a narrative review. Vol. 165. Brain Research Bulletin; 2020. pp. 56–62. https://www.sciencedirect.com/science/article/pii/S0361923020306432.
  • Sagarkar S, Bhamburkar T, Shelkar G, Choudhary A, Kokare DM, Sakharkar AJ. Minimal traumatic brain injury causes persistent changes in DNA methylation at BDNF gene promoters in rat amygdala: a possible role in anxiety-like behaviors. Neurobiol Dis. 2017;106:101–09. doi:10.1016/j.nbd.2017.06.016
  • Bree D, Stratton J, Levy D. Increased severity of closed head injury or repetitive subconcussive head impacts enhances post-traumatic headache-like behaviors in a rat model. Cephalalgia. 2020;40(11):1224–1239.
  • Lavender AP, Rawlings S, Warnock A, McGonigle T, Hiles-Murison B, Nesbit M, Lam V, Hackett MJ, Fitzgerald M, Takechi R, et al. Repeated long-term sub-concussion impacts induce motor dysfunction in rats: a potential rodent model. Front Neurol. 2020;11:491.
  • Christie BR, Trivino-Paredes J, Pinar C, Neale KJ, Meconi A, Reid H, Hutton CP. A rapid neurological assessment protocol for repeated mild traumatic brain injury in awake rats. CP Neuroscience. 2019;89(1). doi:10.1002/cpns.80
  • Henninger N, Sicard KM, Li Z, Kulkarni P, Dützmann S, Urbanek C, Schwab S, Fisher M. Differential recovery of behavioral status and brain function assessed with functional magnetic resonance imaging after mild traumatic brain injury in the rat. Critical Care Medicine. 2007;35(11):2607–14. doi:10.1097/01.CCM.0000286395.79654.8D
  • Kim HJ, Han SJ. A simple rat model of mild traumatic brain injury: a device to reproduce anatomical and neurological changes of mild traumatic brain injury. Peer J. 2017;5:e2818.
  • Singh K, Trivedi R, Haridas S, Manda K, Khushu S. Study of neurometabolic and behavioral alterations in rodent model of mild traumatic brain injury: a pilot study. NMR Biomed. 2016;29(12):1748–58. doi:10.1002/nbm.3627
  • Bankhead P, Loughrey MB, Fernández JA, Dombrowski Y, McArt DG, Dunne PD, McQuaid S, Gray RT, Murray LJ, Coleman HG, James JA. Open source software for digital pathology image analysis. Sci Rep. 2017;7(16878). doi:10.1038/s41598-017-17204-5
  • Mainwaring L, Ferdinand Pennock KM, Mylabathula S, Alavie BZ. Subconcussive head impacts in sport: a systematic review of the evidence. Int J Psychophysiol. 2018;132:39–54. doi:10.1016/j.ijpsycho.2018.01.007
  • Koerte IK, Lin AP, Willems A, Muehlmann M, Hufschmidt J, Coleman MJ, Green I, Liao H, Tate DF, Wilde EA, et al. A review of neuroimaging findings in repetitive brain trauma. Brain Pathol. 2015;25(3):318–49. doi:10.1111/bpa.12249
  • Moore RD, Lepine J, Ellemberg D. The independent influence of concussive and sub-concussive impacts on soccer players’ neurophysiological and neuropsychological function. Int J Psychophysiol. 2017;112:22–30. doi:10.1016/j.ijpsycho.2016.11.011
  • Gangolli M, Benetatos J, Esparza TJ, Fountain EM, Seneviratne S, Brody DL. Repetitive concussive and subconcussive injury in a human tau mouse model results in chronic cognitive dysfunction and disruption of white matter tracts, but not tau pathology. J Neurotrauma. 2019;36(5):735–55. doi:10.1089/neu.2018.5700
  • Hiles-Murison B, Lavender AP, Hackett MJ, Armstrong JJ, Nesbit M, Rawlings S, McGonigle T, Warnock A, Lam V, Mamo JC, Fitzgerald M. Blood–brain barrier disruption and ventricular enlargement are the earliest neuropathological changes in rats with repeated sub-concussive impacts over 2 weeks. Sci Rep. 2021;11(1):1–12. doi:10.1038/s41598-021-88854-9
  • Long T. Modeling subconcussive and cumulative subconcussive impacts using a lateral fluid percusion injury device. Dissertations. 2017;53. https://digitalcommons.njit.edu/dissertations/53.
  • Wilson RJ. Sex differences in behavioral responses to repeat subconcussive events. College of Science and Health Theses and Dissertations. 2019;324. https://via.library.depaul.edu/csh_etd/324
  • Bree D, Mackenzie K, Stratton J, Levy D. Enhanced post-traumatic headache-like behaviors and diminished contribution of peripheral CGRP in female rats following a mild closed head injury. Cephalalgia. 2020;40(7): 748–760.
  • Fehily B, Bartlett CA, Lydiard S, Archer M, Milbourn H, Majimbi M, Hemmi JM, Dunlop SA, Yates NJ, Fitzgerald M, et al. Differential responses to increasing numbers of mild traumatic brain injury in a rodent closed-head injury model. J Neurochem. 2019;149(5):660–78. doi:10.1111/jnc.14673
  • Singh K, Trivedi R, Devi MM, Tripathi RP, Khushu S. Longitudinal changes in the DTI measures, anti-GFAP expression and levels of serum inflammatory cytokines following mild traumatic brain injury. Exp Neurol. 2016;275:427–35. doi:10.1016/j.expneurol.2015.07.016
  • Siebold L, Obenaus A, Goyal R. Criteria to define mild, moderate, and severe traumatic brain injury in the mouse controlled cortical impact model. Exp Neurol. 2018;310(June):48–57. doi:10.1016/j.expneurol.2018.07.004
  • Li Y, Zhang L, Kallakuri S, Cohen A, Cavanaugh JM. Correlation of mechanical impact responses and biomarker levels: a new model for biomarker evaluation in TBI. J Neurol Sci. 2015;359(1–2):280–86. doi:10.1016/j.jns.2015.08.035
  • Fraunberger EA, Dejesus P, Zanier ER, Shutt TE, Esser MJ. Acute and persistent alterations of cerebellar inflammatory networks and glial activation in a rat Model of pediatric mild traumatic brain injury. J Neurotrauma. 2020;37(11):1315–30. doi:10.1089/neu.2019.6714
  • Armstrong CL, Morrow LA. Handbook of medical neuropsychology: applications of cognitive neuroscience. second edition. Armstrong CL, Morrow LAeditors. Cham: Springer International Publishing; 2019 pp. 1–814. https://doi.org/10.1007/978-3-030-14895-9
  • Bodnar CN, Roberts KN, Higgins EK, Bachstetter AD. A systematic review of closed head injury models of mild traumatic brain injury in mice and rats. J Neurotrauma. 2019;36(11):1683–706. doi:10.1089/neu.2018.6127
  • Beitchman JA, Griffiths DR, Hur Y, Ogle SB, Bromberg CE, Morrison HW, et al. Experimental traumatic brain injury induces chronic glutamatergic dysfunction in amygdala circuitry known to regulate anxiety-like behavior. Front Neurosci. 2020;13:1434.
  • Budde MD, Shah A, McCrea M, Cullinan WE, Pintar FA, Stemper BD. Primary blast traumatic brain injury in the rat: relating diffusion tensor imaging and behavior. Front Neurol. 2013;4:4. doi:10.3389/fneur.2013.00154
  • Schwerin SC, Hutchinson EB, Radomski KL, Ngalula KP, Pierpaoli CM, Juliano SL. Establishing the ferret as a gyrencephalic animal model of traumatic brain injury: optimization of controlled cortical impact procedures. J Neurosci Methods. 2017;285:82–96. doi:10.1016/j.jneumeth.2017.05.010
  • Yang LY, Greig NH, Huang YN, Hsieh TH, Tweedie D, Yu QS, Hoffer BJ, Luo Y, Kao Y-C, Wang J-Y, et al. Post-traumatic administration of the p53 inactivator pifithrin-α oxygen analogue reduces hippocampal neuronal loss and improves cognitive deficits after experimental traumatic brain injury. Neurobiol Dis. 2016;96:216–26.
  • Almeida-Suhett CP, Prager EM, Pidoplichko V, Figueiredo TH, Marini AM, Li Z, Eiden LE, Braga MF. Reduced GABAergic inhibition in the basolateral amygdala and the development of anxiety-like behaviors after mild traumatic brain injury. PLoS One. 2014;9(7):e102627. doi:10.1371/journal.pone.0102627
  • Namjoshi DR, Cheng WH, Bashir A, Wilkinson A, Stukas S, Martens KM, Whyte T, Abebe ZA, McInnes KA, Cripton PA, et al. Defining the biomechanical and biological threshold of murine mild traumatic brain injury using CHIMERA (closed head impact model of engineered rotational acceleration). Exp Neurol. 2017;292:80–91.
  • Kosari-Nasab M, Shokouhi G, Ghorbanihaghjo A, Mesgari-Abbasi M, Salari AA. Quercetin mitigates anxiety-like behavior and normalizes hypothalamus-pituitary-adrenal axis function in a mouse model of mild traumatic brain injury. Behav Pharmacol. 2019;30(2and3–SpecialIssue):282–89. doi:10.1097/FBP.0000000000000480
  • Meyer DL, Davies DR, Barr JL, Manzerra P, Forster GL. Mild traumatic brain injury in the rat alters neuronal number in the limbic system and increases conditioned fear and anxiety-like behaviors. Exp Neurol. 2012;235(2):574–87. doi:10.1016/j.expneurol.2012.03.012
  • Taib T, Leconte C, van SJ, Cho AH, Palmier B, Torsello E, Lai Kuen R, Onyeomah S, Ecomard K, Benedetto C, et al. Neuroinflammation, myelin and behavior: temporal patterns following mild traumatic brain injury in mice. PLoS One. 2017;12(9):e0184811. doi:10.1371/journal.pone.0184811
  • Nichols JN, Deshane AS, Niedzielko TL, Smith CD, Floyd CL. Greater neurobehavioral deficits occur in adult mice after repeated, as compared to single, mild traumatic brain injury (mTBI). Behav Brain Res. 2016;298:111–24. doi:10.1016/j.bbr.2015.10.052
  • Karve IP, Taylor JM, Crack PJ. The contribution of astrocytes and microglia to traumatic brain injury. Br J Pharmacol. 2016;173(4):692–702. doi:10.1111/bph.13125
  • Velayudhan PS, Schwab N, Hazrati LN, Wheeler AL. Temporal patterns of microglial activation in white matter following experimental mild traumatic brain injury: a systematic literature review. Acta Neuropathol Commun. 2021;9(1):1–22. doi:10.1186/s40478-021-01297-1
  • Shultz SR, MacFabe DF, Foley KA, Taylor R, Cain DP. Sub-concussive brain injury in the long-evans rat induces acute neuroinflammation in the absence of behavioral impairments. Behav Brain Res. 2012;229(1):145–52. doi:10.1016/j.bbr.2011.12.015
  • Liu W, Tang Y, Feng J. Cross talk between activation of microglia and astrocytes in pathological conditions in the central nervous system. Life Sci. 2011;89(5–6):141–46. doi:10.1016/j.lfs.2011.05.011
  • Jha MK, Jo M, Kim JH, Suk K. Microglia-astrocyte crosstalk: an intimate molecular conversation. Neuroscientist. 2019;25(3):227–40. doi:10.1177/1073858418783959
  • Chen YC, Mao H, Yang KH, Abel T, Meaney DF. A modified controlled cortical impact technique to model mild traumatic brain injury mechanics in mice. Front Neurol. 2014;5. doi:10.3389/fneur.2014.00100
  • Eyolfson E, Khan A, Mychasiuk R, Lohman AW. Microglia dynamics in adolescent traumatic brain injury. J Neuroinflammation. 2020;17(1):1–19. doi:10.1186/s12974-020-01994-z
  • Zhou Y, Shao A, Yao Y, Tu S, Deng Y, Zhang J. Dual roles of astrocytes in plasticity and reconstruction after traumatic brain injury. Cell Commun Signal. 2020;18(1):1–16. doi:10.1186/s12964-020-00549-2

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.