1,540
Views
26
CrossRef citations to date
0
Altmetric
Articles

How does reward compete with goal-directed and stimulus-driven shifts of attention?

, , &
Pages 109-118 | Received 30 Apr 2015, Accepted 18 Aug 2015, Published online: 24 Sep 2015

References

  • Allport, D. A. (1989). Visual attention. In M. I. Posner (Ed.), Foundations of cognitive science (pp. 631–687). Cambridge, MA: MIT Press.
  • Anderson, B. A., Faulkner, M. L., Rilee, J. J., Yantis, S., & Marvel, C. L. (2013). Attentional bias for nondrug reward is magnified in addiction. Experimental and Clinical Psychopharmacology, 21(6), 499–506. doi: 10.1037/a0034575
  • Anderson, B. A., Laurent, P. A., & Yantis, S. (2011a). Learned value magnifies salience-based attentional capture. PLoS One, 6(11), e27926. doi: 10.1371/journal.pone.0027926
  • Anderson, B. A., Laurent, P. A., & Yantis, S. (2011b). Value-driven attentional capture. Proceedings of National Academy of Sciences of the USA, 108(25), 10367–10371. doi: 10.1073/pnas.1104047108
  • Anderson, B. A., Laurent, P. A., & Yantis, S. (2013). Reward predictions bias attentional selection. Frontiers in Human Neuroscience, 7, 262.
  • Anderson, B. A., Laurent, P. A., & Yantis, S. (2014). Value-driven attentional priority signals in human basal ganglia and visual cortex. Brain Research, 1587, 88–96. doi: 10.1016/j.brainres.2014.08.062
  • Arsenault, J. T., Nelissen, K., Jarraya, B., & Vanduffel, W. (2013). Dopaminergic reward signals selectively decrease fMRI activity in primate visual cortex. Neuron, 77(6), 1174–1186. doi: 10.1016/j.neuron.2013.01.008
  • Bartolomeo, P., Sieroff, E., Decaix, C., & Chokron, S. (2001). Modulating the attentional bias in unilateral neglect: The effects of the strategic set. Experimental Brain Research, 137(3–4), 432–444. doi: 10.1007/s002210000642
  • Bijleveld, E., Custers, R., & Aarts, H. (2010). Unconscious reward cues increase invested effort, but do not change speed-accuracy tradeoffs. Cognition, 115(2), 330–335. doi: 10.1016/j.cognition.2009.12.012
  • Buschman, T. J., & Miller, E. K. (2007). Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices. Science, 315(5820), 1860–1862. doi: 10.1126/science.1138071
  • Chelazzi, L., Estocinova, J., Calletti, R., Lo Gerfo, E., Sani, I., Della Libera, C., & Santandrea, E. (2014). Altering spatial priority maps via reward-based learning. Journal of Neuroscience, 34(25), 8594–8604. doi: 10.1523/JNEUROSCI.0277-14.2014
  • Chun, M. M., & Jiang, Y. (1998). Contextual cueing: Implicit learning and memory of visual context guides spatial attention. Cognitive Psychology, 36(1), 28–71. doi: 10.1006/cogp.1998.0681
  • Corbetta, M., Patel, G., & Shulman, G. L. (2008). The reorienting system of the human brain: From environment to theory of mind. Neuron, 58(3), 306–324. doi: 10.1016/j.neuron.2008.04.017
  • Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience, 3(3), 215–215. doi: 10.1038/nrn755
  • Della Libera, C., & Chelazzi, L. (2009). Learning to attend and to ignore is a matter of gains and losses. Psychological Science, 20(6), 778–784. doi: 10.1111/j.1467-9280.2009.02360.x
  • Engelmann, J. B., Damaraju, E., Padmala, S., & Pessoa, L. (2009). Combined effects of attention and motivation on visual task performance: Transient and sustained motivational effects. Frontiers in Human Neuroscience, 3, 4. doi: 10.3389/neuro.09.004.2009
  • Engelmann, J. B., & Pessoa, L. (2007). Motivation sharpens exogenous spatial attention. Emotion, 7(3), 668–674. doi: 10.1037/1528-3542.7.3.668
  • Fenske, M. J., Raymond, J. E., & Kunar, M. A. (2004). The affective consequences of visual attention in preview search. Psychonomic Bulletin & Review, 11(6), 1055–1061. doi: 10.3758/BF03196736
  • Gottlieb, J. P., Kusunoki, M., & Goldberg, M. E. (1998). The representation of visual salience in monkey parietal cortex. Nature, 391(6666), 481–484. doi: 10.1038/35135
  • Hadj-Bouziane, F., Liu, N., Bell, A. H., Gothard, K. M., Luh, W. M., Tootell, R. B., … Ungerleider, L. G. (2012). Amygdala lesions disrupt modulation of functional MRI activity evoked by facial expression in the monkey inferior temporal cortex. Proceedings of National Academy of Sciences of the USA, 109(52), E3640–E3648. doi: 10.1073/pnas.1218406109
  • Haynes, J. D., & Rees, G. (2005). Predicting the stream of consciousness from activity in human visual cortex. Current Biology, 15(14), 1301–1307. doi: 10.1016/j.cub.2005.06.026
  • Hickey, C., Chelazzi, L., & Theeuwes, J. (2010). Reward changes salience in human vision via the anterior cingulate. Journal of Neuroscience, 30(33), 11096–11103. doi: 10.1523/JNEUROSCI.1026-10.2010
  • Hickey, C., & van Zoest, W. (2013). Reward-associated stimuli capture the eyes in spite of strategic attentional set. Vision Research, 92, 67–74. doi: 10.1016/j.visres.2013.09.008
  • Ikeda, T., & Hikosaka, O. (2003). Reward-dependent gain and bias of visual responses in primate superior colliculus. Neuron, 39(4), 693–700. doi: 10.1016/S0896-6273(03)00464-1
  • Ikeda, T., & Hikosaka, O. (2007). Positive and negative modulation of motor response in primate superior colliculus by reward expectation. Journal of Neurophysiology, 98(6), 3163–3170. doi: 10.1152/jn.00975.2007
  • Kastner, S., & Ungerleider, L. G. (2000). Mechanisms of visual attention in the human cortex. Annual Review of Neuroscience, 23, 315–341. doi: 10.1146/annurev.neuro.23.1.315
  • Krebs, R. M., Boehler, C. N., Roberts, K. C., Song, A. W., & Woldorff, M. G. (2012). The involvement of the dopaminergic midbrain and cortico-striatal-thalamic circuits in the integration of reward prospect and attentional task demands. Cerebral Cortex, 22(3), 607–615. doi: 10.1093/cercor/bhr134
  • Lang, P. J., Bradley, M. M., & Cuthbert, B. N. (1997). Motivated attention: Affect, activation, and action. In P. J. Lang, R. F. Simons, & M. T. Balaban (Eds.), Attention and orienting: Sensory and motivational processes (pp. 97–135). Mahwah, NJ: Lawrence Erlbaum Associates.
  • Lee, J., & Shomstein, S. (2014). Reward-based transfer from bottom-up to top-down search tasks. Psychological Science, 25(2), 466–475. doi: 10.1177/0956797613509284
  • Lucas, N., Schwartz, S., Leroy, R., Pavin, S., Diserens, K., & Vuilleumier, P. (2013). Gambling against neglect: Unconscious spatial biases induced by reward reinforcement in healthy people and brain-damaged patients. Cortex, 49(10), 2616–2627. doi: 10.1016/j.cortex.2013.06.004
  • Maunsell, J. H. (2004). Neuronal representations of cognitive state: Reward or attention? Trends in Cognitive Sciences, 8(6), 261–265. doi: 10.1016/j.tics.2004.04.003
  • Peck, C. J., Jangraw, D. C., Suzuki, M., Efem, R., & Gottlieb, J. (2009). Reward modulates attention independently of action value in posterior parietal cortex. Journal of Neuroscience, 29(36), 11182–11191. doi: 10.1523/JNEUROSCI.1929-09.2009
  • Pourtois, G., Schettino, A., & Vuilleumier, P. (2012). Brain mechanisms for emotional influences on perception and attention: What is magic and what is not. Biological Psychology , 92(3), 492–512.
  • Schneider, W., Eschman, A., & Zuccolotto, A. (2002). E-prime user's guide. Pittsburgh, PA: Psychology Software Tools.
  • Schultz, W. (2000). Multiple reward signals in the brain. Nature Reviews Neuroscience, 1(3), 199–207. doi: 10.1038/35044563
  • Serences, J. T. (2008). Value-based modulations in human visual cortex. Neuron, 60(6), 1169–1181. doi: 10.1016/j.neuron.2008.10.051
  • Stankevich, B. A., & Geng, J. J. (2014). Reward associations and spatial probabilities produce additive effects on attentional selection. Attention, Perception, & Psychophysics , 76(8), 2315–2325.
  • Theeuwes, J., & Belopolsky, A. V. (2012). Reward grabs the eye: Oculomotor capture by rewarding stimuli. Vision Research, 74, 80–85. doi: 10.1016/j.visres.2012.07.024
  • Todd, R. M., Cunningham, W. A., Anderson, A. K., & Thompson, E. (2012). Affect-biased attention as emotion regulation. Trends in Cognitive Sciences, 16(7), 365–372. doi: 10.1016/j.tics.2012.06.003
  • Tosoni, A., Shulman, G. L., Pope, A. L., McAvoy, M. P., & Corbetta, M. (2013). Distinct representations for shifts of spatial attention and changes of reward contingencies in the human brain. Cortex, 49(6), 1733–1749. doi: 10.1016/j.cortex.2012.03.022
  • Vuilleumier, P. (2005). How brains beware: Neural mechanisms of emotional attention. Trends in Cognitive Sciences, 9(12), 585–594. doi: 10.1016/j.tics.2005.10.011
  • Vuilleumier, P. (2015). Affective and motivational control of vision. Current Opinion in Neurology, 28(1), 29–35. doi: 10.1097/WCO.0000000000000159
  • Vuilleumier, P., Armony, J. L., Driver, J., & Dolan, R. J. (2001). Effects of attention and emotion on face processing in the human brain: An event-related fMRI study. Neuron, 30(3), 829–841. doi: 10.1016/S0896-6273(01)00328-2
  • Vuilleumier, P., & Brosch, T. (2009). Interactions of emotion and attention in perception. In M. S. Gazzaniga (Ed.), The cognitive neurosciences IV (pp. 925–934). Cambridge: MIT Press.
  • Vuilleumier, P., & Driver, J. (2007). Modulation of visual processing by attention and emotion: Windows on causal interactions between human brain regions. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 362(1481), 837–855. doi: 10.1098/rstb.2007.2092
  • Wise, R. A. (2002). Brain reward circuitry: Insights from unsensed incentives. Neuron, 36(2), 229–240. doi: 10.1016/S0896-6273(02)00965-0

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.