2,790
Views
6
CrossRef citations to date
0
Altmetric
Articles

Acute stress – but not aversive scene content – impairs spatial configuration learning

ORCID Icon, , &
Pages 201-216 | Received 30 Jan 2019, Accepted 25 Mar 2019, Published online: 16 Apr 2019

References

  • Barrett, L. F., & Kensinger, E. A. (2010). Context is routinely encoded during emotion perception. Psychological Science, 21(4), 595–599. doi: 10.1177/0956797610363547
  • Bennett, I. J., Barnes, K. A., Howard, J. H., & Howard, D. V. (2009). An abbreviated implicit spatial context learning task that yields greater learning. Behavior Research Methods, 41(2), 391–395. doi: 10.3758/brm.41.2.391
  • Bisby, J. A., & Burgess, N. (2014). Negative affect impairs associative memory but not item memory. Learning & Memory, 21(1), 21–27. doi: 10.1101/lm.032409.113
  • Bisby, J. A., Horner, A. J., Bush, D., & Burgess, N. (2018). Negative emotional content disrupts the coherence of episodic memories. Journal of Experimental Psychology: General, 147(2), 243–256. doi: 10.1037/xge0000356
  • Brewin, C. R., Gregory, J. D., Lipton, M., & Burgess, N. (2010). Intrusive images in psychological disorders: Characteristics, neural mechanisms, and treatment implications. Psychological Review, 117(1), 210–232. doi: 10.1037/a0018113
  • Brockmole, J. R., & Henderson, J. M. (2006a). Recognition and attention guidance during contextual cueing in real-world scenes: Evidence from eye movements. Quarterly Journal of Experimental Psychology, 59(7), 1177–1187. doi: 10.1080/17470210600665996
  • Brockmole, J. R., & Henderson, J. M. (2006b). Using real-world scenes as contextual cues for search. Visual Cognition, 13(1), 99–108. doi: 10.1080/13506280500165188
  • Burgess, N., Maguire, E. A., & O’Keefe, J. (2002). The human hippocampus and spatial and episodic memory. Neuron, 35(4), 625–641. doi: 10.1016/s0896-6273(02)00830-9
  • Chua, K. P., & Chun, M. M. (2003). Implicit scene learning is viewpoint dependent. Perception & Psychophysics, 65(1), 72–80.
  • Chun, M. M. (2000). Contextual cueing of visual attention. Trends in Cognitive Sciences, 4(5), 170–178. doi: 10.1016/S1364-6613(00)01476-5
  • Chun, M. M., & Jiang, Y. H. (1998). Contextual cueing: Implicit learning and memory of visual context guides spatial attention. Cognitive Psychology, 36(1), 28–71.
  • Chun, M. M., & Jiang, Y. H. (2003). Implicit, long-term spatial contextual memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 29(2), 224–234. doi: 10.1037/0278-7393.29.2.224
  • Chun, M. M., & Phelps, E. A. (1999). Memory deficits for implicit contextual information in amnesic subjects with hippocampal damage. Nature Neuroscience, 2(9), 844–847.
  • Colagiuri, B., & Livesey, E. J. (2016). Contextual cuing as a form of nonconscious learning: Theoretical and empirical analysis in large and very large samples. Psychonomic Bulletin & Review, 23(6), 1996–2009. doi: 10.3758/s13423-016-1063-0
  • Conci, M., & von Mühlenen, A. (2009). Region segmentation and contextual cuing. Attention, Perception, & Psychophysics, 71(7), 1514–1524. doi: 10.3758/APP.71.7.1514
  • de Kloet, E. R., Joels, M., & Holsboer, F. (2005). Stress and the brain: From adaptation to disease. Nature Reviews Neuroscience, 6(6), 463–475. doi: 10.1038/nrn1683
  • Ehlers, A. (2010). Understanding and treating unwanted trauma memories in posttraumatic stress disorder. Zeitschrift Fur Psychologie-Journal of Psychology, 218(2), 141–145. doi: 10.1027/0044-3409/a000021
  • Fyhn, M., Hafting, T., Treves, A., Moser, M.-B., & Moser, E. I. (2007). Hippocampal remapping and grid realignment in entorhinal cortex. Nature, 446(7132), 190–194.
  • Gable, P., & Harmon-Jones, E. (2010). The motivational dimensional model of affect: Implications for breadth of attention, memory, and cognitive categorisation. Cognition and Emotion, 24(2), 322–337.
  • Harris, A. M., & Remington, R. W. (2017). Contextual cueing improves attentional guidance, even when guidance is supposedly optimal. Journal of Experimental Psychology: Human Perception and Performance, 43(5), 926–940. doi: 10.1037/xhp0000394
  • Kidd, T., Carvalho, L. A., & Steptoe, A. (2014). The relationship between cortisol responses to laboratory stress and cortisol profiles in daily life. Biological Psychology, 99, 34–40. doi: 10.1016/j.biopsycho.2014.02.010
  • Kudielka, B. M., Hellhammer, D. H., & Wüst, S. (2009). Why do we respond so differently? Reviewing determinants of human salivary cortisol responses to challenge. Psychoneuroendocrinology, 34(1), 2–18. doi: 10.1016/j.psyneuen.2008.10.004
  • Kuhlmann, S., Piel, M., & Wolf, O. T. (2005). Impaired memory retrieval after psychosocial stress in healthy young men. Journal of Neuroscience, 25(11), 2977–2982. doi: 10.1523/JNEUROSCI.5139-04.2005
  • Kunar, M. A., Flusberg, S., Horowitz, T. S., & Wolfe, J. M. (2007). Does contextual cuing guide the deployment of attention? Journal of Experimental Psychology: Human Perception and Performance, 33(4), 816–828. doi: 10.1037/0096-1523.33.4.816
  • Kunar, M. A., John, R., & Sweetman, H. (2014). A configural dominant account of contextual cueing: Configural cues are stronger than colour cues. Quarterly Journal of Experimental Psychology, 67(7), 1366–1382. doi: 10.1080/17470218.2013.863373
  • Kunar, M. A., Watson, D. G., Cole, L., & Cox, A. (2014). Negative emotional stimuli reduce contextual cueing but not response times in inefficient search. Quarterly Journal of Experimental Psychology, 67(2), 377–393. doi: 10.1080/17470218.2013.815236
  • Lang, P. J., Bradley, M. M., & Cuthbert, B. N. (2005). International affective picture system (IAPS): Instruction manual and affective ratings. Technical report A-6. Gainesville, FL: University of Florida.
  • Makovski, T. (2018). Meaning in learning: Contextual cueing relies on objects’ visual features and not on objects’ meaning. Memory & Cognition, 46(1), 58–67. doi: 10.3758/s13421-017-0745-9
  • Manginelli, A. A., Langer, N., Klose, D., & Pollmann, S. (2013). Contextual cueing under working memory load: Selective interference of visuospatial load with expression of learning. Attention, Perception, & Psychophysics, 75(6), 1103–1117. doi: 10.3758/s13414-013-0466-5
  • Manns, J. R., & Squire, L. R. (2001). Perceptual learning, awareness, and the hippocampus. Hippocampus, 11(6), 776–782. doi: 10.1002/hipo.1093
  • Maren, S., Phan, K. L., & Liberzon, I. (2013). The contextual brain: Implications for fear conditioning, extinction and psychopathology. Nature Reviews Neuroscience, 14, 417–428. doi: 10.1038/nrn3492
  • Meyer, T., Krans, J., van Ast, V., & Smeets, T. (2017). Visuospatial context learning and configuration learning is associated with analogue traumatic intrusions. Journal of Behavior Therapy and Experimental Psychiatry, 54, 120–127. doi: 10.1016/j.jbtep.2016.07.010
  • Meyer, T., Smeets, T., Giesbrecht, T., Quaedflieg, C. W. E. M., Girardelli, M. M., Mackay, G. R. N., & Merckelbach, H. (2013). Individual differences in spatial configuration learning predict the occurrence of intrusive memories. Cognitive, Affective, & Behavioral Neuroscience, 13(1), 186–196. doi: 10.3758/s13415-012-0123-9
  • Meyer, T., Smeets, T., Giesbrecht, T., Quaedflieg, C. W. E. M., & Merckelbach, H. (2013). Acute stress differentially affects spatial configuration learning in high and low cortisol-responding healthy adults. European Journal of Psychotraumatology, 4(1), 19854. doi: 10.3402/ejpt.v4i0.19854
  • Miller, R., Plessow, F., Kirschbaum, C., & Stalder, T. (2013). Classification criteria for distinguishing cortisol responders from nonresponders to psychosocial stress: Evaluation of salivary cortisol pulse detection in panel designs. Psychosomatic Medicine, 75(9), 832–840. doi: 10.1097/psy.0000000000000002
  • Murray, E. A., Bussey, T. J., & Saksida, L. M. (2007). Visual perception and memory: A new view of medial temporal lobe function in primates and rodents. Annual Review of Neuroscience, 30, 99–122. doi: 10.1146/annurev.neuro.29.051605.113046
  • Nicolson, N. A. (2008). Measurement of cortisol. In L. J. Luecken & L. C. Gallo (Eds.), Handbook of physiological research methods in health psychology (pp. 37–74). Los Angeles: Sage.
  • Olatunji, B. O., Ciesielski, B. G., Armstrong, T., & Zald, D. H. (2011). Emotional expressions and visual search efficiency: Specificity and effects of anxiety symptoms. Emotion, 11(5), 1073–1079.
  • Phelps, E. A., Ling, S., & Carrasco, M. (2006). Emotion facilitates perception and potentiates the perceptual benefits of attention. Psychological Science, 17(4), 292–299.
  • Pollmann, S. (2018). Working memory dependence of spatial contextual cueing for visual search. British Journal of Psychology, doi: 10.1111/bjop.12311
  • Preston, A. R., & Gabrieli, J. D. E. (2008). Dissociation between explicit memory and configural memory in the human medial temporal lobe. Cerebral Cortex, 18(9), 2192–2207. doi: 10.1093/cercor/bhm245
  • Quaedflieg, C. W. E. M., Meyer, T., Van Ruitenbeek, P., & Smeets, T. (2017). Examining habituation and sensitization across repetitive laboratory stress inductions using the MAST. Psychoneuroendocrinology, 77, 175–181. doi: 10.1016/j.psyneuen.2016.12.009
  • Quaedflieg, C. W. E. M., & Schwabe, L. (2018). Memory dynamics under stress. Memory (Hove, England), 26(3), 364–376. doi: 10.1080/09658211.2017.1338299
  • Quaedflieg, C. W. E. M., Schwabe, L., Meyer, T., & Smeets, T. (2013). Time dependent effects of stress prior to encoding on event-related potentials and 24h delayed retrieval. Psychoneuroendocrinology, 38(12), 3057–3069. doi: 10.1016/j.psyneuen.2013.09.002
  • Quaedflieg, C. W. E. M., van de Ven, V., Meyer, T., Siep, N., Merckelbach, H., & Smeets, T. (2015). Temporal dynamics of stress-induced alternations of intrinsic amygdala connectivity and neuroendocrine levels. PLoS ONE, 10(5), e0124141. doi: 10.1371/journal.pone.0124141
  • Rivest, L. P. (1994). Statistical properties of Winsorized means for skewed distributions. Biometrika, 81(2), 373–383. doi: 10.1093/biomet/81.2.373
  • Roozendaal, B., Griffith, Q. K., Buranday, J., de Quervain, D. J. F., & McGaugh, J. L. (2003). The hippocampus mediates glucocorticoid-induced impairment of spatial memory retrieval: Dependence on the basolateral amygdala. Proceedings of the National Academy of Sciences, 100(3), 1328–1333. doi: 10.1073/pnas.0337480100
  • Roozendaal, B., Okuda, S., de Quervain, D. J. F., & McGaugh, J. L. (2006). Glucocorticoids interact with emotion-induced noradrenergic activation in influencing different memory functions. Neuroscience, 138(3), 901–910. doi: 10.1016/j.neuroscience.2005.07.049
  • Rubin, D. C., Berntsen, D., & Bohni, M. K. (2008). Memory-based model of posttraumatic stress disorder: Evaluating basic assumptions underlying the PTSD diagnosis. Psychological Review, 115(4), 985–1011. doi: 10.1037/a0013397
  • Schankin, A., & Schubo, A. (2009). Cognitive processes facilitated by contextual cueing: Evidence from event-related brain potentials. Psychophysiology, 46(3), 668–679. doi: 10.1111/j.1469-8986.2009.00807.x
  • Schwabe, L., Joëls, M., Roozendaal, B., Wolf, O. T., & Oitzl, M. S. (2012). Stress effects on memory: An update and integration. Neuroscience & Biobehavioral Reviews, 36(7), 1740–1749. doi: 10.1016/j.neubiorev.2011.07.002
  • Sharifian, F., Contier, O., Preuschhof, C., & Pollmann, S. (2017). Reward modulation of contextual cueing: Repeated context overshadows repeated target location. Attention, Perception, & Psychophysics, 79(7), 1871–1877. doi: 10.3758/s13414-017-1397-3
  • Shilton, A. L., Laycock, R., & Crewther, S. G. (2017). The Maastricht Acute Stress Test (MAST): Physiological and subjective responses in anticipation, and post-stress. Frontiers in Psychology, 8(567), doi: 10.3389/fpsyg.2017.00567
  • Smeets, T., Cornelisse, S., Quaedflieg, C. W. E. M., Meyer, T., Jelicic, M., & Merckelbach, H. (2012). Introducing the Maastricht Acute Stress Test (MAST): A quick and non-invasive approach to elicit robust autonomic and glucocorticoid stress responses. Psychoneuroendocrinology, 37(12), 1998–2008. doi: 10.1016/j.psyneuen.2012.04.012
  • Smeets, T., Dziobek, I., & Wolf, O. T. (2009). Social cognition under stress: Differential effects of stress-induced cortisol elevations in healthy young men and women. Hormones and Behavior, 55(4), 507–513. doi: 10.1016/j.yhbeh.2009.01.011
  • Smeets, T., Otgaar, H., Candel, I., & Wolf, O. T. (2008). True or false? Memory is differentially affected by stress-induced cortisol elevations and sympathetic activity at consolidation and retrieval. Psychoneuroendocrinology, 33(10), 1378–1386. doi: 10.1016/j.psyneuen.2008.07.009
  • Smeets, T., van Ruitenbeek, P., Hartogsveld, B., & Quaedflieg, C. W. E. M. (2018). Stress-induced reliance on habitual behavior is moderated by cortisol reactivity. Brain and Cognition, doi: 10.1016/j.bandc.2018.05.005
  • Steinmetz, K. M., & Kensinger, E. (2013). The emotion-induced memory trade-off: More than an effect of overt attention? Memory & Cognition, 41(1), 69–81. doi: 10.3758/s13421-012-0247-8
  • Szekely, A., Rajaram, S., & Mohanty, A. (2017). Context learning for threat detection. Cognition and Emotion, 31(8), 1525–1542. doi: 10.1080/02699931.2016.1237349
  • Thompson, R. (1991). Emotional regulation and emotional development. Educational Psychology Review, 3(4), 269–307.
  • Travis, S. L., Mattingley, J. B., & Dux, P. E. (2013). On the role of working memory in spatial contextual cueing. Journal of Experimental Psychology: Learning, Memory, and Cognition, 39(1), 208–219. doi: 10.1037/a0028644
  • Vadillo, M. A., Konstantinidis, E., & Shanks, D. R. (2016). Underpowered samples, false negatives, and unconscious learning. Psychonomic Bulletin & Review, 23(1), 87–102. doi: 10.3758/s13423-015-0892-6
  • van Strien, N. M., Cappaert, N. L. M., & Witter, M. P. (2009). The anatomy of memory: An interactive overview of the parahippocampal-hippocampal network. Nature Reviews Neuroscience, 10(4), 272–282. doi: 10.1038/nrn2614
  • Vickery, T. J., Sussman, R. S., & Jiang, Y. V. (2010). Spatial context learning survives interference from working memory load. Journal of Experimental Psychology: Human Perception and Performance, 36(6), 1358–1371.
  • Watson, D., Clark, L. A., & Tellegen, A. (1988). Development and validation of brief measures of positive and negative affect: The PANAS scales. Journal of Personality and Social Psychology, 54(6), 1063–1070. doi: 10.1037/0022-3514.54.6.1063
  • Willenbockel, V., Sadr, J., Fiset, D., Horne, G., Gosselin, F., & Tanaka, J. (2010). Controlling low-level image properties: The SHINE toolbox. Behavior Research Methods, 42(3), 671–684. doi: 10.3758/BRM.42.3.671
  • Wirz, L., Wacker, J., Felten, A., Reuter, M., & Schwabe, L. (2017). A deletion variant of the α2b-adrenoceptor modulates the stress-induced shift from “cognitive” to “habit” memory. The Journal of Neuroscience, 37(8), 2149–2160. doi: 10.1523/jneurosci.3507-16.2017
  • Wolf, O. T. (2017). Stress and memory retrieval: Mechanisms and consequences. Current Opinion in Behavioral Sciences, 14, 40–46. doi: 10.1016/j.cobeha.2016.12.001
  • Wolf, O. T., Schommer, N. C., Hellhammer, D. H., McEwen, B. S., & Kirschbaum, C. (2001). The relationship between stress induced cortisol levels and memory differs between men and women. Psychoneuroendocrinology, 26(7), 711–720. doi: 10.1016/s0306-4530(01)00025-7
  • Yamaguchi, M., & Harwood, S. L. (2017). Threat captures attention but does not affect learning of contextual regularities. Cognition and Emotion, 31(3), 564–571. doi: 10.1080/02699931.2015.1115752
  • Zhang, W., van Ast, V. A., Klumpers, F., Roelofs, K., & Hermans, E. J. (2018). Memory contextualization: The role of prefrontal cortex in functional integration across item and context representational regions. Journal of Cognitive Neuroscience, 30(4), 579–593. doi: 10.1162/jocn_a_01218
  • Zinchenko, A., Geyer, T., Müller, H., & Conci, M. (in press). Affective modulation of memory-based guidance in visual search: Dissociative role of positive and negative emotions.