0
Views
0
CrossRef citations to date
0
Altmetric
NEW: Emotional time travel: The role of emotion in temporal memory

The influence of emotion on temporal context models

&
Received 12 Nov 2023, Accepted 17 Jun 2024, Published online: 15 Jul 2024

References

  • Adams, R. L., & Delaney, P. F. (2023). Do we remember when to better recall what? Repetition benefits are probably not due to explicit temporal context memory. Journal of Memory and Language, 131, Article 104415. https://doi.org/10.1016/j.jml.2023.104415
  • Amari, S. (1977). Dynamics of pattern formation in lateral-inhibition type neural fields. Biological Cybernetics, 27(2), 77–87. https://doi.org/10.1007/BF00337259
  • Antony, J., Liu, X. L., Zheng, Y., Ranganath, C., & O'Reilly, R. C. (2022). Memory out of context: Spacing effects and decontextualization in a computational model of the medial temporal lobe. bioRxiv, 2022–12.
  • Arcediano, F., Escobar, M., & Miller, R. R. (2003). Temporal integration and temporal backward associations in human and nonhuman subjects. Learning & Behavior, 31(3), 242–256. https://doi.org/10.3758/BF03195986
  • Arcediano, F., Escobar, M., & Miller, R. R. (2005). Bidirectional associations in humans and rats. Journal of Experimental Psychology: Animal Behavior Processes, 31(3), 301–318.
  • Atanas, A. A., Kim, J., Wang, Z., Bueno, E., Becker, M., Kang, D., Park, J., Kramer, T. S., Wan, F. K., Baskoylu, S., Dag, U., Kalogeropoulou, E., Gomes, M. A., Estrem, C., Cohen, N., Mansinghka, V. K., & Flavell, S. W. (2023). Brain-wide representations of behavior spanning multiple timescales and states in C. elegans. Cell, 186(19), 4134–4151. https://doi.org/10.1016/j.cell.2023.07.035
  • Averell, L., Prince, M., & Heathcote, A. (2016). Fundamental causes of systematic and random variability in recognition memory. Journal of Memory and Language, 88, 51–69. https://doi.org/10.1016/j.jml.2015.12.010
  • Balsam, P. D., & Gallistel, C. R. (2009). Temporal maps and informativeness in associative learning. Trends in Neuroscience, 32(2), 73–78. https://doi.org/10.1016/j.tins.2008.10.004
  • Barnacle, G. E., Tsivilis, D., Schaefer, A., & Talmi, D. (2018). Local context influences memory for emotional stimuli but not electrophysiological markers of emotion-dependent attention. Psychophysiology, 55(4), e13014. https://doi.org/10.1111/psyp.2018.55.issue-4
  • Barnet, R. C., Cole, R. P., & Miller, R. R. (1997). Temporal integration in second-order conditioning and sensory preconditioning. Animal Learning & Behavior, 25(2), 221–233. https://doi.org/10.3758/BF03199061
  • Bladon, J. H., Sheehan, D. J., De Freitas, C. S., & Howard, M. W. (2019). In a temporally segmented experience hippocampal neurons represent temporally drifting context but not discrete segments. Journal of Neuroscience, 39(35), 6936–6952. https://doi.org/10.1523/JNEUROSCI.1420-18.2019
  • Bornstein, A. M., & Norman, K. A. (2017). Reinstated episodic context guides sampling-based decisions for reward. Nature Neuroscience, 20(7), 997. https://doi.org/10.1038/nn.4573
  • Bousfield, W. A. (1953). The occurrence of clustering in the recall of randomly arranged associates. Journal of General Psychology, 49(2), 229–240. https://doi.org/10.1080/00221309.1953.9710088
  • Bower, G. H. (1967). A multicomponent theory of the memory trace. In K. W. Spence & J. T. Spence (Eds.), The psychology of learning and motivation: Advances in research and theory (Vol 1, pp. 229–325). Academic Press.
  • Bright, I. M., Meister, M. L. R., Cruzado, N. A., Tiganj, Z., Buffalo, E. A., & Howard, M. W. (2020). A temporal record of the past with a spectrum of time constants in the monkey entorhinal cortex. Proceedings of the National Academy of Sciences, 117(33), 20274–20283. https://doi.org/10.1073/pnas.1917197117
  • Broitman, A. W., & Swallow, K. M. (2024). The attentional boost effect in free recall dynamics. Memory & Cognition, 52, 752–770. https://doi.org/10.3758/s13421-023-01499-z
  • Brown, G. D. A., Neath, I., & Chater, N. (2007). A temporal ratio model of memory. Psychological Review, 114(3), 539–576. https://doi.org/10.1037/0033-295X.114.3.539
  • Burke, D. A., Jeong, H., Wu, B., Lee, S. A., Floeder, J. R., & K Namboodiri, V. M. (2023). Few-shot learning: Temporal scaling in behavioral and dopaminergic learning. BioRxiv, 2023–03.
  • Cahill, L., & McGaugh, J. L. (1998). Mechanisms of emotional arousal and lasting declarative memory. Trends in Neurosciences, 21(7), 294–299. https://doi.org/10.1016/S0166-2236(97)01214-9
  • Cai, D. J., Aharoni, D., Shuman, T., Shobe, J., Biane, J., Song, W., Wei, B., Veshkini, M., La-Vu, M., Lou, J., Flores, S. E., Kim, I., Sano, Y., Zhou, M., Baumgaertel, K., Lavi, A., Kamata, M., Tuszynski, M., Mayford, M., …Silva, A. J. (2016). A shared neural ensemble links distinct contextual memories encoded close in time. Nature, 534(7605), 115–118. https://doi.org/10.1038/nature17955
  • Cao, R., Bladon, J. H., Charczynski, S. J., Hasselmo, M., & Howard, M. (2022). Internally generated time in the rodent hippocampus is logarithmically compressed. eLife, 11, e75353. https://doi.org/10.7554/eLife.75353
  • Clewett, D., Gasser, C., & Davachi, L. (2020). Pupil-linked arousal signals track the temporal organization of events in memory. Nature Communications, 11(1), 4007. https://doi.org/10.1038/s41467-020-17851-9
  • Cohen, R. T., & Kahana, M. J. (2022). A memory-based theory of emotional disorders. Psychological Review, 129(4), 742–776. https://doi.org/10.1037/rev0000334
  • Cole, R. P., Barnet, R. C., & Miller, R. R. (1995). Temporal encoding in trace conditioning. Animal Learning & Behavior, 23(2), 144–153. https://doi.org/10.3758/BF03199929
  • Copara, M. S., Hassan, A. S., Kyle, C. T., Libby, L. A., Ranganath, C., & A. D. Ekstrom (2014). Complementary roles of human hippocampal subregions during retrieval of spatiotemporal context. Journal of Neuroscience, 34(20), 6834–6842. https://doi.org/10.1523/JNEUROSCI.5341-13.2014
  • Cruzado, N. A., Tiganj, Z., Brincat, S. L., Miller, E. K., & Howard, M. W. (2020). Conjunctive representation of what and when in monkey hippocampus and lateral prefrontal cortex during an associative memory task. Hippocampus, 30, 1332–1346. https://doi.org/10.1002/hipo.v30.12
  • Dannenberg, H., Kelley, C., Hoyland, A., Monaghan, C. K., & Hasselmo, M. E. (2019). The firing rate speed code of entorhinal speed cells differs across behaviorally relevant time scales and does not depend on medial septum inputs. Journal of Neuroscience, 39(18), 1450–1418. https://doi.org/10.1523/JNEUROSCI.1450-18.2019
  • D'Argembeau, A., & Van der Linden, M. (2005). Influence of emotion on memory for temporal information. Emotion (Washington, D.C.), 5(4), 503–507. https://doi.org/10.1037/1528-3542.5.4.503
  • Davis, O., Rizzuto, D., Geller, A. S., & Kahana, M. J. (2008). Temporal associative processes revealed by intrusions in paired-associate recall. Psychonomic Bulletin & Review, 15(1), 64–69. https://doi.org/10.3758/PBR.15.1.64
  • Deese, J., & Kaufman, R. A. (1957). Serial effects in recall of unorganized and sequentially organized verbal material. Journal of Experimental Psychology, 54(3), 180–187. https://doi.org/10.1037/h0040536
  • Deitch, D., Rubin, A., & Ziv, Y. (2021). Representational drift in the mouse visual cortex. Current Biology, 31(19), 4327–4339. https://doi.org/10.1016/j.cub.2021.07.062
  • Deuker, L., Bellmund, J. L., Schröder, T. N., & Doeller, C. F. (2016). An event map of memory space in the hippocampus. eLife, 5, e16534. https://doi.org/10.7554/eLife.16534
  • Deuker, L., Bellmund, J., Schroeder, T. N., & Doeller, C. F. (2014). Investigating the spatiotemporal organization of episodic memory within a virtual world. In Society for neuroscience abstracts (Vol 82.06/LL26).
  • Dev, D. K., Wardell, V., Checknita, K. J., Te, A. A., Petrucci, A. S., Le, M. L., Madan, C. R., & Palombo, D. J. (2022). Negative emotion enhances memory for the sequential unfolding of a naturalistic experience. Journal of Applied Research in Memory and Cognition, 11(4), 510–521. https://doi.org/10.1037/mac0000015
  • Drew, M. R., Couvillon, P. A., Zupan, B., Cooke, A., & Balsam, P. (2005). Temporal control of conditioned responding in Goldfish. Journal of Experimental Psychology: Animal Behavior Processes, 31(1), 31–39.
  • DuBrow, S., & Davachi, L. (2013). The influence of context boundaries on memory for the sequential order of events. Journal of Experimental Psychology: General, 142(4), 1277–1286. https://doi.org/10.1037/a0034024
  • Dunsmoor, J. E., Murty, V. P., Clewett, D., Phelps, E. A., & Davachi, L. (2022). Tag and capture: How salient experiences target and rescue nearby events in memory. Trends in Cognitive Sciences, 26(9), 782–795. https://doi.org/10.1016/j.tics.2022.06.009
  • Dymond, S., Dunsmoor, J. E., Vervliet, B., Roche, B., & Hermans, D. (2015). Fear generalization in humans: Systematic review and implications for anxiety disorder research. Behavior Therapy, 46(5), 561–582. https://doi.org/10.1016/j.beth.2014.10.001
  • Egorov, A. V., Hamam, B. N., Fransén, E., Hasselmo, M. E., & Alonso, A. A. (2002). Graded persistent activity in entorhinal cortex neurons. Nature, 420(6912), 173–178. https://doi.org/10.1038/nature01171
  • Egorov, A. V., Unsicker, K., & von Bohlen und Halbach, O. (2006). Muscarinic control of graded persistent activity in lateral amygdala neurons. European Journal of Neuroscience, 24(11), 3183–3194. https://doi.org/10.1111/ejn.2006.24.issue-11
  • Ehlers, A., & Clark, D. (2000). A cognitive model of posttraumatic stress disorder. Behavior Research and Therapy, 38(4), 319–345. https://doi.org/10.1016/S0005-7967(99)00123-0
  • Eichenbaum, H. (2017). On the integration of space, time, and memory. Neuron, 95(5), 1007–1018. https://doi.org/10.1016/j.neuron.2017.06.036
  • Eichenbaum, H., Dudchenko, P., Wood, E., Shapiro, M., & Tanila, H. (1999). The hippocampus, memory, and place cells: Is it spatial memory or a memory space?. Neuron, 23(2), 209–226. https://doi.org/10.1016/S0896-6273(00)80773-4
  • Estes, W. K. (1955). Statistical theory of spontaneous recovery and regression. Psychological Review, 62(3), 145–154. https://doi.org/10.1037/h0048509
  • Ezzyat, Y., & Davachi, L. (2014). Similarity breeds proximity: Pattern similarity within and across contexts is related to later mnemonic judgments of temporal proximity. Neuron, 81(5), 1179–1189. https://doi.org/10.1016/j.neuron.2014.01.042
  • Faber, M., & Gennari, S. P. (2017). Effects of event structure on prospective duration judgments. Journal of Experimental Psychology: Learning, Memory, and Cognition, 43(8), 1203–1214. https://doi.org/10.3758/BF03205466
  • Farrell, S. (2012). Temporal clustering and sequencing in short-term memory and episodic memory. Psychological Review, 119(2), 223–271. https://doi.org/10.1037/a0027371
  • Farrell, S., & Lewandowsky, S. (2008). Empirical and theoretical limits on lag-recency in free recall. Psychonomic Bulletin & Review, 15(6), 1236–1250. https://doi.org/10.3758/PBR.15.6.1236
  • Fechner, G. (1860/1912). Elements of psychophysics (Vol. I.). Houghton Mifflin.
  • Foa, E. B., Hembree, E., & Rothbaum, B. (2007). Prolonged exposure therapy for PTSD: Emotional processing of traumatic experiences, therapist guide (1st ed.). Oxford University Press.
  • Foa, E. B., & Kozak, M. J. (1986). Emotional processing of fear: Exposure to corrective information. Psychological Bulletin, 99(1), 20–35. https://doi.org/10.1037/0033-2909.99.1.20
  • Folkerts, S., Rutishauser, U., & Howard, M. (2018). 1. Journal of Neuroscience, 38(17), 4200–4211. https://doi.org/10.1523/JNEUROSCI.2312-17.2018
  • Franklin, N. T., Norman, K. A., Ranganath, C., Zacks, J. M., & S. J. Gershman (2020). Structured event memory: A neuro-symbolic model of event cognition. Psychological Review, 127(3), 327–361. https://doi.org/10.1037/rev0000177
  • Fransén, E., Tahvildari, B., Egorov, A. V., Hasselmo, M. E., & A. A. Alonso (2006). Mechanism of graded persistent cellular activity of entorhinal cortex layer V neurons. Neuron, 49(5), 735–746. https://doi.org/10.1016/j.neuron.2006.01.036
  • Gallistel, C. R., & Gibbon, J. (2000). Time, rate, and conditioning. Psychological Review, 107(2), 289–344. https://doi.org/10.1037/0033-295X.107.2.289
  • Gershman, S. J., Moore, C. D., Todd, M. T., Norman, K. A., & Sederberg, P. B. (2012). The successor representation and temporal context. Neural Computation, 24(6), 1553–1568. https://doi.org/10.1162/NECO_a_00282
  • Geva, N., Deitch, D., Rubin, A., & Ziv, Y. (2023). Time and experience differentially affect distinct aspects of hippocampal representational drift. Neuron, 111(15), 2357–2366. https://doi.org/10.1016/j.neuron.2023.05.005
  • Glenberg, A. M., Bradley, M. M., Stevenson, J. A., Kraus, T. A., Tkachuk, M. J., & Gretz, A. L. (1980). A two-process account of long-term serial position effects. Journal of Experimental Psychology: Human Learning and Memory, 6(4), 355–369. https://doi.org/10.1037/0278-7393.6.4.355
  • Goh, W. Z. (2021). Remembering the past to predict the future: A scale-invariant timeline for memory and anticipation [Unpublished doctoral dissertation]. Boston University.
  • Gothard, K. M., Hoffman, K. L., Battaglia, F. P., & McNaughton, B. L. (2001). Dentate gyrus and CA1 ensemble activity during spatial reference frame shifts in the presence and absence of visual input. Journal of Neuroscience, 21(18), 7284–7292. https://doi.org/10.1523/JNEUROSCI.21-18-07284.2001
  • Gothard, K. M., Skaggs, W. E., & McNaughton, B. L. (1996). Dynamics of mismatch correction in the hippocampal ensemble code for space: Interaction between path integration and environmental cues. Journal of Neuroscience, 16(24), 8027–8040. https://doi.org/10.1523/JNEUROSCI.16-24-08027.1996
  • Goyal, A., Miller, J., Watrous, A. J., Lee, S. A., Coffey, T., Sperling, M. R., Sharan, A., Worrell, G., Berry, B., Lega, B., Jobst, B. C., Davis, K. A., Inman, C., Sheth, S. A., Wanda, P. A., Ezzyat, Y., Das, S. R., Stein, J., Gorniak, R., … Jacobs, J. (2018). Electrical stimulation in hippocampus and entorhinal cortex impairs spatial and temporal memory. Journal of Neuroscience, 38(19), 3049–3017. https://doi.org/10.1523/JNEUROSCI.3049-17.2018
  • Hacker, M. J. (1980). Speed and accuracy of recency judgments for events in short-term memory. Journal of Experimental Psychology: Human Learning and Memory, 6(6), 651–675. https://doi.org/10.1037/0278-7393.6.6.651
  • Hackmann, A., Ehlers, A., Speckens, A., & Clark, D. M. (2004). Characteristics and content of intrusive memories in PTSD and their changes with treatment. Journal of Traumatic Stress: Official Publication of The International Society for Traumatic Stress Studies, 17(3), 231–240. https://doi.org/10.1023/B:JOTS.0000029266.88369.fd
  • Hadley, C. B., & MacKay, D. G. (2006). Does emotion help or hinder immediate memory? Arousal versus priority-binding mechanisms. Journal of Experimental Psychology: Learning, Memory, and Cognition, 32(1), 79–88.
  • Harland, B., Contreras, M., Souder, M., & Fellous, J. M. (2021). Dorsal CA1 hippocampal place cells form a multi-scale representation of megaspace. Current Biology, 31(10), 2178–2190. https://doi.org/10.1016/j.cub.2021.03.003
  • Healey, M. K., & Kahana, M. J. (2014). Is memory search governed by universal principles or idiosyncratic strategies? Journal of Experimental Psychology: General, 143(2), 575. https://doi.org/10.1037/a0033715
  • Healey, M. K., & Kahana, M. J. (2016). A four-component model of age-related memory change. Psychological Review, 123(1), 23–69. https://doi.org/10.1037/rev0000015
  • Healey, M. K., Long, N. M., & Kahana, M. J. (2019). Contiguity in episodic memory. Psychonomic Bulletin & Review, 26(3), 699–720. https://doi.org/10.3758/s13423-018-1537-3
  • Healey, M. K., & Wahlheim, C. N. (2024). PEPPR: A post-encoding pre-production reinstatement model of dual-list free recall. Memory & Cognition, 52, 163–181. https://doi.org/10.3758/s13421-023-01453-z
  • Hellerstedt, R., Bekinschtein, T., & Talmi, D. (2023). Can neural correlates of encoding explain the context dependence of reward-enhanced memory?. Psychophysiology, 60(9), e14322. https://doi.org/10.1111/psyp.14322
  • Hellerstedt, R., & Talmi, D. (2022). Reward does not modulate forgetting in free recall tests. Learning & Memory, 29(12), 430–434. https://doi.org/10.1101/lm.053631.122
  • Hinrichs, J. V. (1970). A two-process memory-strength theory for judgment of recency. Psychological Review, 77(3), 223–233. https://doi.org/10.1037/h0029101
  • Hinrichs, J. V., & Buschke, H. (1968). Judgment of recency under steady-state conditions. Journal of Experimental Psychology, 78(4), 574–579. https://doi.org/10.1037/h0026615
  • Hintzman, D. L. (2004). Judgment of frequency versus recognition confidence: Repetition and recursive reminding. Memory & Cognition, 32(2), 336–350. https://doi.org/10.3758/BF03196863
  • Hintzman, D. L. (2010). How does repetition affect memory? Evidence from judgments of recency. Memory & Cognition, 38(1), 102–115. https://doi.org/10.3758/MC.38.1.102
  • Hintzman, D. L. (2016). Is memory organized by temporal contiguity? Memory & Cognition, 44(3), 365–375. https://doi.org/10.3758/s13421-015-0573-8
  • Hintzman, D. L., Block, R. A., & Summers, J. J. (1973). Contextual associations and memory for serial positions. Journal of Experimental Psychology, 97(2), 220–229. https://doi.org/10.1037/h0033884
  • Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Science, USA, 79(8), 2554–2558. https://doi.org/10.1073/pnas.79.8.2554
  • Horwath, E. A., Rouhani, N., DuBrow, S., & Murty, V. P. (2023). Value restructures the organization of free recall. Cognition, 231, Article 105315. https://doi.org/10.1016/j.cognition.2022.105315
  • Howard, M. W. (2022). Formal models of memory based on temporally-varying representations. arXiv preprint arXiv:2201.01796
  • Howard, M. W., Bessette-Symons, B. A., Zhang, Y., & Hoyer, W. J. (2006). Aging selectively impairs recollection in recognition memory for pictures: Evidence from modeling and ROC curves. Psychology and Aging, 21(1), 96–106. https://doi.org/10.1037/0882-7974.21.1.96
  • Howard, M. W., & Eichenbaum, H. (2013). The hippocampus, time, and memory across scales. Journal of Experimental Psychology: General, 142(4), 1211–1230. https://doi.org/10.1037/a0033621
  • Howard, M. W., Esfahani, Z. G., Le, B., & Sederberg, P. B. (2023). Foundations of a temporal RL. arXiv preprint arXiv:2302.10163.
  • Howard, M. W., Jing, B., Rao, V. A., Provyn, J. P., & Datey, A. V. (2009). Bridging the gap: Transitive associations between items presented in similar temporal contexts. Journal of Experimental Psychology: Learning, Memory, and Cognition, 35(32), 391–407. https://doi.org/10.1037/a0015002
  • Howard, M. W., & Kahana, M. J. (1999). Contextual variability and serial position effects in free recall. Journal of Experimental Psychology: Learning, Memory, and Cognition, 25(4), 923–941. https://doi.org/10.1037/0278-7393.25.4.923
  • Howard, M. W., & Kahana, M. J. (2002a). A distributed representation of temporal context. Journal of Mathematical Psychology, 46(3), 269–299. https://doi.org/10.1006/jmps.2001.1388
  • Howard, M. W., & Kahana, M. J. (2002b). When does semantic similarity help episodic retrieval?. Journal of Memory and Language, 46(1), 85–98. https://doi.org/10.1006/jmla.2001.2798
  • Howard, M. W., Kahana, M. J., & Wingfield, A. (2006). Aging and contextual binding: Modeling recency and lag-recency effects with the temporal context model. Psychonomic Bulletin & Review, 13(3), 439–445. https://doi.org/10.3758/BF03193867
  • Howard, M. W., MacDonald, C. J., Tiganj, Z., Shankar, K. H., Du, Q., Hasselmo, M. E., & Eichenbaum, H. (2014). A unified mathematical framework for coding time, space, and sequences in the hippocampal region. Journal of Neuroscience, 34(13), 4692–4707. https://doi.org/10.1523/JNEUROSCI.5808-12.2014
  • Howard, M. W., Shankar, K. H., Aue, W., & Criss, A. H. (2015). A distributed representation of internal time. Psychological Review, 122(1), 24–53. https://doi.org/10.1037/a0037840
  • Howard, M. W., Viskontas, I. V., Shankar, K. H., & Fried, I. (2012). Ensembles of human MTL neurons “Jump back in time” in response to a repeated stimulus. Hippocampus, 22(9), 1833–1847. https://doi.org/10.1002/hipo.v22.9
  • Howard, M. W., Youker, T. E., & Venkatadass, V. (2008). The persistence of memory: Contiguity effects across several minutes. Psychonomic Bulletin & Review, 15(1), 58–63. https://doi.org/10.3758/PBR.15.1.58
  • Hsieh, L. T., Gruber, M. J., Jenkins, L. J., & Ranganath, C. (2014). Hippocampal activity patterns carry information about objects in temporal context. Neuron, 81(5), 1165–1178. https://doi.org/10.1016/j.neuron.2014.01.015
  • Huntjens, R. J., Wessel, I., Postma, A., van Wees-Cieraad, R., & P. J. De Jong (2015). Binding temporal context in memory: Impact of emotional arousal as a function of state anxiety and state dissociation. Journal of Nervous and Mental Disease, 203(7), 545–550. https://doi.org/10.1097/NMD.0000000000000325
  • Hurlemann, R., Hawellek, B., Matusch, A., Kolsch, H., Wollersen, H., Madea, B., Vogeley, K., Maier, W., & Dolan, R. J. (2005). Noradrenergic modulation of emotion-induced forgetting and remembering. Journal of Neuroscience, 25(27), 6343–6349. https://doi.org/10.1523/JNEUROSCI.0228-05.2005
  • Hyman, J. M., Ma, L., Balaguer-Ballester, E., Durstewitz, D., & Seamans, J. K. (2012). Contextual encoding by ensembles of medial prefrontal cortex neurons. Proceedings of the National Academy of Sciences USA, 109(13), 5086–5091. https://doi.org/10.1073/pnas.1114415109
  • James, W. (1890). The principles of psychology. Holt.
  • Janak, P. H., & Tye, K. M. (2015). From circuits to behaviour in the amygdala. Nature, 517(7534), 284–292. https://doi.org/10.1038/nature14188
  • Jenkins, J. J., & Russell, W. A. (1952). Associative clustering during recall. The Journal of Abnormal and Social Psychology, 47(4), 818. https://doi.org/10.1037/h0063149
  • Jeong, H., Taylor, A., Floeder, J. R., Lohmann, M., Mihalas, S., Wu, B., Zhou, M., Burke, D. A., & Namboodiri, V. M. K. (2022). Mesolimbic dopamine release conveys causal associations. Science (New York, N.Y.), 378(6626), eabq6740. https://doi.org/10.1126/science.abq6740
  • Jin, D. Z., Fujii, N., & Graybiel, A. M. (2009). Neural representation of time in cortico-basal ganglia circuits. Proceedings of the National Academy of Sciences, 106(45), 19156–19161. https://doi.org/10.1073/pnas.0909881106
  • Kahana, M. J. (1996). Associative retrieval processes in free recall. Memory & Cognition, 24(1), 103–109. https://doi.org/10.3758/BF03197276
  • Kahana, M. J., Howard, M. W., Zaromb, F., & Wingfield, A. (2002). Age dissociates recency and lag-recency effects in free recall. Journal of Experimental Psychology: Learning, Memory, and Cognition, 28(3), 530–540.
  • Kim, S. S., Rouault, H., Druckmann, S., & Jayaraman, V. (2017). Ring attractor dynamics in the Drosophila central brain. Science (New York, N.Y.), 356(6340), 849–853. https://doi.org/10.1126/science.aal4835
  • Kleinfeld, D., & Sompolinsky, H. (1988). Associative neural network model for the generation of temporal patterns. Theory and application to central pattern generators. Biophysical Journal, 54(6), 1039–1051. https://doi.org/10.1016/S0006-3495(88)83041-8
  • Kleinsmith, L. J., & Kaplan, S. (1964). Interaction of arousal and recall interval in nonsense syllable paired-associate learning. Journal of Experimental Psychology, 67(2), 124–126. https://doi.org/10.1037/h0045203
  • Knight, M., & Mather, M. (2009). Reconciling findings of emotion-induced memory enhancement and impairment of preceding items. Emotion (Washington, D.C.), 9(6), 763–781. https://doi.org/10.1037/a0017281
  • Koenig, S., & Mecklinger, A. (2008). Electrophysiological correlates of encoding and retrieving emotional events. Emotion (Washington, D.C.), 8(2), 162–173. https://doi.org/10.1037/1528-3542.8.2.162
  • Kragel, J. E., Morton, N. W., & Polyn, S. M. (2015). Neural activity in the medial temporal lobe reveals the fidelity of mental time travel. Journal of Neuroscience, 35(7), 2914–2926. https://doi.org/10.1523/JNEUROSCI.3378-14.2015
  • Kragel, J. E., & Voss, J. L. (2020). Temporal context guides visual exploration during scene recognition. Journal of Experimental Psychology: General, 150(5), 873–889. https://doi.org/10.1037/xge0000827
  • Kraus, B. J., Brandon, M. P., Robinson, R. J., Connerney, M. A., Hasselmo, M. E., & Eichenbaum, H. (2015). During running in place, grid cells integrate elapsed time and distance run. Neuron, 88(3), 578–589. https://doi.org/10.1016/j.neuron.2015.09.031
  • Kraus, B. J., Robinson, R. J., Eichenbaum, H., & Hasselmo, M. E. (2013). Hippocampal “time cells”: Time versus path integration. Neuron, 78(6), 1090–1101. https://doi.org/10.1016/j.neuron.2013.04.015
  • Kurby, C. A., & Zacks, J. M. (2008). Segmentation in the perception and memory of events. Trends in Cognitive Sciences, 12(2), 72–79. https://doi.org/10.1016/j.tics.2007.11.004
  • LaBar, K. S., & Cabeza, R. (2006). Cognitive neuroscience of emotional memory. Nature Reviews Neuroscience, 7(1), 54–64. https://doi.org/10.1038/nrn1825
  • LeDoux, J. E. (2000). Emotion circuits in the brain. Annual Review of Neuroscience, 23(1), 155–184. https://doi.org/10.1146/neuro.2000.23.issue-1
  • Lee, J. Q., & Brandon, M. P. (2023). Time and experience are independent determinants of representational drift in CA1. Neuron, 111(15), 2275–2277. https://doi.org/10.1016/j.neuron.2023.07.001
  • Lee, J. H., Lee, S., & Kim, J H. (2017). Amygdala circuits for fear memory: A key role for dopamine regulation. The Neuroscientist, 23(5), 542–553. https://doi.org/10.1177/1073858416679936
  • Le Pelley, M. E., Mitchell, C. J., Beesley, T., George, D. N., & Wills, A. J. (2016). Attention and associative learning in humans: An integrative review. Psychological Bulletin, 142(10), 1111–1140. https://doi.org/10.1037/bul0000064
  • Liu, Y., Tiganj, Z., Hasselmo, M. E., & Howard, M. W. (2019). A neural microcircuit model for a scalable scale-invariant representation of time. Hippocampus, 29(3), 260–274. https://doi.org/10.1002/hipo.v29.3
  • Logan, G. D. (2021). Serial order in perception, memory, and action. Psychological Review, 128(1), 1–44. https://doi.org/10.1037/rev0000253
  • Logan, G. D., & Cox, G. E. (2021). Serial memory: Putting chains and position codes in context. Psychological Review, 128(6), 1197–1205. https://doi.org/10.1037/rev0000327
  • Logan, G. D., & Cox, G. E. (2023). Serial order depends on item-dependent and item-independent contexts. Psychological Review, 130(6), 1672–1687. https://doi.org/10.1037/rev0000422
  • Lohnas, L. J., & Healey, M. K. (2021). The role of context in episodic memory: Behavior and neurophysiology. Psychology of Learning and Motivation, 75, 157–199. https://doi.org/10.1016/bs.plm.2021.06.003
  • Lohnas, L. J., M. K. Healey, & Davachi, L. (2023). Neural temporal context reinstatement of event structure during memory recall. Journal of Experimental Psychology: General, 152(7), 1840–1872. https://doi.org/10.1037/xge0001354
  • Lohnas, L. J., & Kahana, M. J. (2014). Compound cuing in free recall. Journal of Experimental Psychology: Learning, Memory and Cognition, 40(1), 12–24. https://doi.org/10.1037/a0033698
  • Lohnas, L. J., Polyn, S. M., & Kahana, M. J. (2015). Expanding the scope of memory search: Modeling intralist and interlist effects in free recall. Psychological Review, 122(2), 337–363. https://doi.org/10.1037/a0039036
  • Long, N. M., Danoff, M. S., & Kahana, M. J. (2015). Recall dynamics reveal the retrieval of emotional context. Psychonomic Bulletin & Review, 22, 1328–1333. https://doi.org/10.3758/s13423-014-0791-2
  • Lositsky, O., Chen, J., Toker, D., Honey, C. J., Shvartsman, M., Poppenk, J. L., Hasson, U., & Norman, K. A. (2016). Neural pattern change during encoding of a narrative predicts retrospective duration estimates. eLife, 5, e16070. https://doi.org/10.7554/eLife.16070
  • MacDonald, C. J., Lepage, K. Q., Eden, U. T., & Eichenbaum, H. (2011). Hippocampal “Time cells” bridge the gap in memory for discontiguous events. Neuron, 71(4), 737–749. https://doi.org/10.1016/j.neuron.2011.07.012
  • Mack, C. C., Cinel, C., Davies, N., Harding, M., & Ward, G. (2017). Serial position, output order, and list length effects for words presented on smartphones over very long intervals. Journal of Memory and Language, 97, 61–80. https://doi.org/10.1016/j.jml.2017.07.009
  • MacKay, D. G., Shafto, M., Taylor, J. K., Marian, D. E., Abrams, L., & Dyer, J. R. (2004). Relations between emotion, memory, and attention: Evidence from taboo Stroop, lexical decision, and immediate memory tasks. Memory & Cognition, 32(3), 474–488. https://doi.org/10.3758/BF03195840
  • Maddock, R. J., & Frein, S. T. (2009). Reduced memory for the spatial and temporal context of unpleasant words. Cognition and Emotion, 23(1), 96–117. https://doi.org/10.1080/02699930801948977
  • Mankin, E. A., Sparks, F. T., Slayyeh, B., Sutherland, R. J., Leutgeb, S., & J. K. Leutgeb (2012). Neuronal code for extended time in the hippocampus. Proceedings of the National Academy of Sciences, 109(47), 19462–19467. https://doi.org/10.1073/pnas.1214107109
  • Manning, J. R., Polyn, S. M., Litt, B., Baltuch, G., & Kahana, M. J. (2011). Oscillatory patterns in temporal lobe reveal context reinstatement during memory search. Proceedings of the National Academy of Science, USA, 108(31), 12893–12897. https://doi.org/10.1073/pnas.1015174108
  • Manns, J. R., Howard, M. W., & Eichenbaum, H. B. (2007). Gradual changes in hippocampal activity support remembering the order of events. Neuron, 56(3), 530–540. https://doi.org/10.1016/j.neuron.2007.08.017
  • Mather, M. (2007). Emotional arousal and memory binding: An object-based framework. Perspectives on Psychological Science, 2(1), 33–52. https://doi.org/10.1111/j.1745-6916.2007.00028.x
  • Mather, M., Clewett, D., Sakaki, M., & Harley, C. W. (2016). Norepinephrine ignites local hotspots of neuronal excitation: How arousal amplifies selectivity in perception and memory. Behavioral and Brain Sciences, 39, e200. https://doi.org/10.1017/S0140525X15000667
  • Mather, M., & Sutherland, M. R. (2011). Arousal-biased competition in perception and memory. Perspectives on Psychological Science, 6(2), 114–133. https://doi.org/10.1177/1745691611400234
  • Mau, W., Hasselmo, M. E., & Cai, D. J. (2020). The brain in motion: How ensemble fluidity drives memory-updating and flexibility. eLife, 9, e63550. https://doi.org/10.7554/eLife.63550
  • Mau, W., Sullivan, D. W., Kinsky, N. R., Hasselmo, M. E., Howard, M. W., & Eichenbaum, H. (2018). The same hippocampal CA1 population simultaneously codes temporal information over multiple timescales. Current Biology, 28(10), 1499–1508. https://doi.org/10.1016/j.cub.2018.03.051
  • McDaniel, M. A., & Bugg, J. M. (2008). Instability in memory phenomena: A common puzzle and a unifying explanation. Psychonomic Bulletin & Review, 15(2), 237–255. https://doi.org/10.3758/PBR.15.2.237
  • McElree, B., & Dosher, B. A. (1993). Serial recovery processes in the recovery of order information. Journal of Experimental Psychology: General, 122(3), 291–315. https://doi.org/10.1037/0096-3445.122.3.291
  • McKenzie, S., & Eichenbaum, H. (2011). Consolidation and reconsolidation: Two lives of memories? Neuron, 71(2), 224–233. https://doi.org/10.1016/j.neuron.2011.06.037
  • Mello, G. B., Soares, S., & Paton, J. J. (2015). A scalable population code for time in the striatum. Current Biology, 25(9), 1113–1122. https://doi.org/10.1016/j.cub.2015.02.036
  • Minor, G., & Herzmann, G. (2019). Effects of negative emotion on neural correlates of item and source memory during encoding and retrieval. Brain Research, 1718, 32–45. https://doi.org/10.1016/j.brainres.2019.05.001
  • Moita, M. A., Rosis, S., Zhou, Y., LeDoux, J. E., & Blair, H. T. (2003). Hippocampal place cells acquire location-specific responses to the conditioned stimulus during auditory fear conditioning. Neuron, 37(3), 485–497. https://doi.org/10.1016/S0896-6273(03)00033-3
  • Moita, M. A., Rosis, S., Zhou, Y., LeDoux, J. E., & Blair, H. T. (2004). Putting fear in its place: Remapping of hippocampal place cells during fear conditioning. Journal of Neuroscience, 24(31), 7015–7023. https://doi.org/10.1523/JNEUROSCI.5492-03.2004
  • Moreton, B. J., & Ward, G. (2010). Time scale similarity and long-term memory for autobiographical events. Psychonomic Bulletin & Review, 17, 510–515. https://doi.org/10.3758/PBR.17.4.510
  • Moscovitch, M., Cabeza, R., Winocur, G., & Nadel, L. (2016). Episodic memory and beyond: The hippocampus and neocortex in transformation. Annual Review of Psychology, 67, 105–134. https://doi.org/10.1146/psych.2015.67.issue-1
  • Murdock, B. B. (1962). The serial position effect of free recall. Journal of Experimental Psychology, 64, 482–488. https://doi.org/10.1037/h0045106
  • Murdock, B. B. (1997). Context and mediators in a theory of distributed associative memory (TODAM2). Psychological Review, 104(2), 839–862. https://doi.org/10.1037/0033-295X.104.4.839
  • Murphy, D. H., Schwartz, S. T., & Castel, A. D. (2022). Serial and strategic memory processes in goal-directed selective remembering. Cognition, 225, Article 105178. https://doi.org/10.1016/j.cognition.2022.105178
  • Murty, V. P., Ritchey, M., Adcock, R. A., & LaBar, K. S. (2010). fMRI studies of successful emotional memory encoding: A quantitative meta-analysis. Neuropsychologia, 48(12), 3459–3469. https://doi.org/10.1016/j.neuropsychologia.2010.07.030
  • Muter, P. (1979). Response latencies in discriminations of recency. Journal of Experimental Psychology: Human Learning and Memory, 5(2), 160–169.
  • Navaroli, V. L., Zhao, Y., Boguszewski, P., & Brown, T. H. (2011). Muscarinic receptor activation enables persistent firing in pyramidal neurons from superficial layers of dorsal perirhinal cortex. Hippocampus, 22, 1392–1404. https://doi.org/10.1002/hipo.20975
  • Nielson, D. M., Smith, T. A., Sreekumar, V., Dennis, S., & Sederberg, P. B. (2015). Human hippocampus represents space and time during retrieval of real-world memories. Proceedings of the National Academy of Sciences, 112(35), 11078–11083. https://doi.org/10.1073/pnas.1507104112
  • Norman, D. A., & Wickelgren, W. A. (1969). Strength theory of decision rules and latency in short-term memory. Journal of Mathematical Psychology, 6(2), 192–208. https://doi.org/10.1016/0022-2496(69)90002-9.
  • O'Keefe, J., & Burgess, N. (1996). Geometric determinants of the place fields of hippocampal neurons. Nature, 381(6581), 425–428. https://doi.org/10.1038/381425a0
  • O'Keefe, J., & Nadel, L. (1978). The hippocampus as a cognitive map. Oxford University Press.
  • Osth, A. F., & Farrell, S. (2019). Using response time distributions and race models to characterize primacy and recency effects in free recall initiation. Psychological Review, 126(4), 578–609. https://doi.org/10.1037/rev0000149
  • Osth, A. F., & Fox, J. (2019). Are associations formed across word pairs? A test of learning by temporal contiguity in associative recognition. Psychonomic Bulletin & Review, 26, 1650–1656. https://doi.org/10.3758/s13423-019-01616-7
  • Palombo, D. J., & Cocquyt, C. (2020). Emotion in context: Remembering when. Trends in Cognitive Sciences, 24(9), 687–690. https://doi.org/10.1016/j.tics.2020.05.017
  • Palombo, D. J., Di Lascio, J. M., Howard, M. W., & Verfaellie, M. (2019). Medial temporal lobe amnesia is associated with a deficit in recovering temporal context. Journal of Cognitive Neuroscience, 31(2), 236–248. https://doi.org/10.1162/jocn_a_01344
  • Palombo, D. J., Elizur, L., Tuen, Y. J., Te, A. A., & Madan, C. R. (2021). Transfer of negative valence in an episodic memory task. Cognition, 217, Article 104874. https://doi.org/10.1016/j.cognition.2021.104874
  • Palumbo, R., Mammarella, N., Di Domenico, A., & Fairfield, B. (2018). When and where in aging: The role of music on source monitoring. Aging Clinical and Experimental Research, 30, 669–676. https://doi.org/10.1007/s40520-018-0955-4
  • Pastalkova, E., Itskov, V., Amarasingham, A., & Buzsaki, G. (2008). Internally generated cell assembly sequences in the rat hippocampus. Science (New York, N.Y.), 321(5894), 1322–1327. https://doi.org/10.1126/science.1159775
  • Pazdera, J. K., & Kahana, M. J. (2023). Modality effects in free recall: A retrieved-context account. Journal of Experimental Psychology: Learning, Memory, and Cognition, 49(6), 866–888. https://doi.org/10.1037/xlm0001140
  • Petrucci, A. S., & Palombo, D. J. (2021). A matter of time: How does emotion influence temporal aspects of remembering?. Cognition and Emotion, 35(8), 1499–1515. https://doi.org/10.1080/02699931.2021.1976733
  • Phelps, E. A., & LeDoux, J. E. (2005). Contributions of the amygdala to emotion processing: From animal models to human behavior. Neuron, 48(2), 175–187. https://doi.org/10.1016/j.neuron.2005.09.025
  • Polyn, S. M., Norman, K. A., & Kahana, M. J. (2009). A context maintenance and retrieval model of organizational processes in free recall. Psychological Review, 116(1), 129–156. https://doi.org/10.1037/a0014420
  • Pu, Y., Kong, X. Z., Ranganath, C., & Melloni, L. (2022). Event boundaries shape temporal organization of memory by resetting temporal context. Nature Communications, 13(1), 622. https://doi.org/10.1038/s41467-022-28216-9
  • Radvansky, G. A., & Zacks, J. M. (2014). Event cognition (1st ed). Oxford University Press.
  • Ranganath, C., & Ritchey, M. (2012). Two cortical systems for memory-guided behaviour. Nature Reviews Neuroscience, 13(10), 713–726. https://doi.org/10.1038/nrn3338
  • Rao, V. A., & Howard, M. W. (2008). Retrieved context and the discovery of semantic structure. In J. Platt, D. Koller, Y. Singer, & S. Roweis (Eds.), Advances in Neural Information Processing Systems 20 (Vol. PMC3086794, pp. 1193–1200). MIT Press.
  • Rashid, A. J., Yan, C., Mercaldo, V., Hsiang, H. L. L., Park, S., & C. J. , … others Cole (2016). Competition between engrams influences fear memory formation and recall. Science (New York, N.Y.), 353(6297), 383–387. https://doi.org/10.1126/science.aaf0594
  • Resick, P. A., & Schnicke, M. K. (1992). Cognitive processing therapy for sexual assault victims. Journal of Consulting and Clinical Psychology, 60(5), 748. https://doi.org/10.1037/0022-006X.60.5.748
  • Riberto, M., Paz, R., Pobric, G., & Talmi, D. (2022). The neural representations of emotional experiences are more similar than those of neutral experiences. Journal of Neuroscience, 42(13), 2772–2785. https://doi.org/10.1523/JNEUROSCI.1490-21.2022
  • Richardson, M., Strange, B., & Dolan, R. (2004). Encoding of emotional memories depends on amygdala and hippocampus and their interactions. Nature Neuroscience, 7(3), 278–285. https://doi.org/10.1038/nn1190
  • Riegel, M., Wierzba, M., Grabowska, A., Jednoróg, K., & Marchewka, A. (2016). Effect of emotion on memory for words and their context. Journal of Comparative Neurology, 524(8), 1636–1645. https://doi.org/10.1002/cne.v524.8
  • Rimmele, U., Davachi, L., & Phelps, E. A. (2012). Memory for time and place contributes to enhanced confidence in memories for emotional events. Emotion (Washington, D.C.), 12(4), 834–846. https://doi.org/10.1037/a0028003
  • Roesler, R., Parent, M. B., LaLumiere, R. T., & McIntyre, C. K. (2021). Amygdala-hippocampal interactions in synaptic plasticity and memory formation. Neurobiology of Learning and Memory, 184, Article 107490. https://doi.org/10.1016/j.nlm.2021.107490
  • Rossi-Pool, R., Zizumbo, J., Alvarez, M., Vergara, J., Zainos, A., & Romo, R. (2019). Temporal signals underlying a cognitive process in the dorsal premotor cortex. Proceedings of the National Academy of Sciences, 116, 7523–7532. https://doi.org/10.1073/pnas.1820474116
  • Rouhani, N., Norman, K. A., Niv, Y., & Bornstein, A. M. (2020). Reward prediction errors create event boundaries in memory. Cognition, 203, 104269. https://doi.org/10.1016/j.cognition.2020.104269
  • Salet, J. M., Kruijne, W., & van Rijn, H. (2021). Implicit learning of temporal behavior in complex dynamic environments. Psychonomic Bulletin & Review, 28(4), 1270–1280. https://doi.org/10.3758/s13423-020-01873-x
  • Salet, J. M., Kruijne, W., van Rijn, H., Los, S. A., & Meeter, M. (2022). FMTP: A unifying computational framework of temporal preparation across time scales. Psychological Review, 129(5), 911–948. https://doi.org/10.1037/rev0000356
  • Schaffer, E. S., Mishra, N., Whiteway, M. R., Li, W., Vancura, M. B., Freedman, J., K. B. Patel, Voleti, V., & Paninski, L. (2023). The spatial and temporal structure of neural activity across the fly brain. Nature Communications, 14(1), 5572. https://doi.org/10.1038/s41467-023-41261-2
  • Schlüter, H., Hackländer, R. P., & Bermeitinger, C. (2019). Emotional oddball: A review on memory effects. Psychonomic Bulletin & Review, 26, 1472–1502. https://doi.org/10.3758/s13423-019-01658-x
  • Schmidt, K., Patnaik, P., & Kensinger, E. A. (2011). Emotion's influence on memory for spatial and temporal context. Cognition and Emotion, 25(2), 229–243. https://doi.org/10.1080/02699931.2010.483123
  • Schonhaut, D. R., Aghajan, Z. M., Kahana, M. J., & Fried, I. (2022). A neural code for spatiotemporal context. bioRxiv.
  • Schoonover, C. E., Ohashi, S. N., Axel, R., & Fink, A. J. (2021). Representational drift in primary olfactory cortex. Nature, 594(7864), 541–546. https://doi.org/10.1038/s41586-021-03628-7
  • Schwartz, G., Howard, M. W., Jing, B., & Kahana, M. J. (2005). Shadows of the past: Temporal retrieval effects in recognition memory. Psychological Science, 16(11), 898–904. https://doi.org/10.1111/j.1467-9280.2005.01634.x
  • Sederberg, P. B., Gershman, S. J., Polyn, S. M., & Norman, K. A. (2011). Human memory reconsolidation can be explained using the temporal context model. Psychonomic Bulletin & Review, 18(3), 455–468. https://doi.org/10.3758/s13423-011-0086-9
  • Sederberg, P. B., Howard, M. W., & Kahana, M. J. (2008). A context-based theory of recency and contiguity in free recall. Psychological Review, 115(4), 893–912. https://doi.org/10.1037/a0013396
  • Shahbaba, B., Li, L., Agostinelli, F., Saraf, M., Cooper, K. W., Haghverdian, D., G. A. Elias, Baldi, P., & Fortin, N. J. (2022). Hippocampal ensembles represent sequential relationships among an extended sequence of nonspatial events. Nature Communications, 13(1), 1–17. https://doi.org/10.1038/s41467-022-28057-6
  • Shankar, K. H., & Howard, M. W. (2010). Timing using temporal context. Brain Research, 1365, 3–17. https://doi.org/10.1016/j.brainres.2010.07.045
  • Shankar, K. H., & Howard, M. W. (2012). A scale-invariant internal representation of time. Neural Computation, 24(1), 134–193. https://doi.org/10.1162/NECO_a_00212
  • Shankar, K. H., & Howard, M. W. (2013). Optimally fuzzy temporal memory. Journal of Machine Learning Research, 14, 3753–3780.
  • Sheehan, D. J., Charczynski, S., Fordyce, B. A., Hasselmo, M. E., & Howard, M. W. (2021). A compressed representation of spatial distance in the rodent hippocampus. bioRxiv.
  • Siddiqui, A. P., & Unsworth, N. (2011). Investigating the role of emotion during the search process in free recall. Memory & Cognition, 39, 1387–1400. https://doi.org/10.3758/s13421-011-0125-9
  • Sols, I., DuBrow, S., Davachi, L., & Fuentemilla, L. (2017). Event boundaries trigger rapid memory reinstatement of the prior events to promote their representation in long-term memory. Current Biology, 27(22), 3499–3504. https://doi.org/10.1016/j.cub.2017.09.057
  • Sommer, T., Gläscher, J., Moritz, S., & Büchel, C. (2008). Emotional enhancement effect of memory: Removing the influence of cognitive factors. Learning & Memory, 15(8), 569–573. https://doi.org/10.1101/lm.995108
  • Spalla, D., Cornacchia, I. M., & Treves, A. (2021). Continuous attractors for dynamic memories. eLife, 10, e69499. https://doi.org/10.7554/eLife.69499
  • Spitmaan, M., Seo, H., Lee, D., & Soltani, A. (2020). Multiple timescales of neural dynamics and integration of task-relevant signals across cortex. Proceedings of the National Academy of Sciences, 117(36), 22522–22531. https://doi.org/10.1073/pnas.2005993117
  • Stefanidi, A., Ellis, D. M., & Brewer, G. A. (2018). Free recall dynamics in value-directed remembering. Journal of Memory and Language, 100, 18–31. https://doi.org/10.1016/j.jml.2017.11.004
  • Swallow, K. M., & Jiang, Y. V. (2010). The attentional boost effect: Transient increases in attention to one task enhance performance in a second task. Cognition, 115(1), 118–132. https://doi.org/10.1016/j.cognition.2009.12.003
  • Talmi, D. (2013). Enhanced emotional memory: Cognitive and neural mechanisms. Current Directions in Psychological Science, 22(6), 430–436. https://doi.org/10.1177/0963721413498893
  • Talmi, D., Kavaliauskaite, D., & Daw, N. D. (2021). In for a penny, in for a pound: Examining motivated memory through the lens of retrieved context models. Learning & Memory, 28(12), 445–456. https://doi.org/10.1101/lm.053470.121
  • Talmi, D., Lohnas, L. J., & Daw, N. D. (2019). A retrieved context model of the emotional modulation of memory. Psychological Review, 126(4), 455–485. https://doi.org/10.1037/rev0000132
  • Talmi, D., Luk, B. T. C., McGarry, L. M., & Moscovitch, M. (2007). The contribution of relatedness and distinctiveness to emotionally-enhanced memory. Journal of Memory and Language, 56(4), 555–574. https://doi.org/10.1016/j.jml.2007.01.002
  • Talmi, D., & Moscovitch, M. (2004). Can semantic relatedness explain the enhancement of memory for emotional words?. Memory & Cognition, 32, 742–751. https://doi.org/10.3758/BF03195864
  • Tambini, A., Rimmele, U., Phelps, E. A., & Davachi, L. (2017). Emotional brain states carry over and enhance future memory formation. Nature Neuroscience, 20(2), 271–278. https://doi.org/10.1038/nn.4468
  • Taub, A. H., Shohat, Y., & Paz, R. (2018). Long time-scales in primate amygdala neurons support aversive learning. Nature Communications, 9(1), 4460. https://doi.org/10.1038/s41467-018-07020-4
  • Taxidis, J., Pnevmatikakis, E. A., Dorian, C. C., Mylavarapu, A. L., Arora, J. S., Samadian, K. D., Hoffberg, E. A., & Golshani, P. (2020). Differential emergence and stability of sensory and temporal representations in context-specific hippocampal sequences. Neuron, 108(5), 984–998.e9. https://doi.org/10.1016/j.neuron.2020.08.028
  • Tiganj, Z., Cromer, J. A., Roy, J. E., Miller, E. K., & Howard, M. W. (2017). Compressed timeline of recent experience in monkey lPFC. bioRxiv, 126219.
  • Tiganj, Z., Hasselmo, M. E., & Howard, M. W. (2015). A simple biophysically plausible model for long time constants in single neurons. Hippocampus, 25(1), 27–37. https://doi.org/10.1002/hipo.v25.1
  • Tiganj, Z., Singh, I., Esfahani, Z. G., & Howard, M. W. (2022). Scanning a compressed ordered representation of the future. Journal of Experimental Psychology: General, 151(12), 3082–3096. https://doi.org/10.1037/xge0001243
  • Tompary, A., & Davachi, L. (2017). Consolidation promotes the emergence of representational overlap in the hippocampus and medial prefrontal cortex. Neuron, 96(1), 228–241. https://doi.org/10.1016/j.neuron.2017.09.005
  • Tsao, A., Sugar, J., Lu, L., Wang, C., Knierim, J. J., Moser, M B., & Moser, E. I. (2018). Integrating time from experience in the lateral entorhinal cortex. Nature, 561(7721), 57–62. https://doi.org/10.1038/s41586-018-0459-6
  • Tulving, E. (1972). Episodic and semantic memory. In E. Tulving & W. Donaldson (Eds.), Organization of memory (pp. 381–403). Adademic Press.
  • Tulving, E. (1985). Memory and consciousness. Canadian Psychology, 26(1), 1–12. https://doi.org/10.1037/h0080017
  • Uitvlugt, M. G., & Healey, M. K. (2019). Temporal proximity links unrelated news events in memory. Psychological Science, 30(1), 92–104. https://doi.org/10.1177/0956797618808474
  • Unsworth, N. (2008). Exploring the retrieval dynamics of delayed and final free recall: Further evidence for temporal-contextual search. Journal of Memory and Language, 59(2), 223–236. https://doi.org/10.1016/j.jml.2008.04.002
  • Waelti, P., Dickinson, A., & Schultz, W. (2001). Dopamine responses comply with basic assumptions of formal learning theory. Nature, 412(6842), 43–48. https://doi.org/10.1038/35083500
  • Wahlheim, C. N., & Huff, M. J. (2015). Age differences in the focus of retrieval: Evidence from dual-list free recall. Psychology and Aging, 30(4), 768. https://doi.org/10.1037/pag0000049
  • Wang, M. E., Wann, E. G., Yuan, R. K., Álvarez, M. M. R., Stead, S. M., & I. A. Muzzio (2012). Long-term stabilization of place cell remapping produced by a fearful experience. Journal of Neuroscience, 32(45), 15802–15814. https://doi.org/10.1523/JNEUROSCI.0480-12.2012
  • Ward, G., & Tan, L. (2023). The role of rehearsal and reminding in the recall of categorized word lists. Cognitive Psychology, 143, Article 101563. https://doi.org/10.1016/j.cogpsych.2023.101563
  • Watts, S., Buratto, L. G., Brotherhood, E. V., Barnacle, G. E., & Schaefer, A. (2014). The neural fate of neutral information in emotion-enhanced memory. Psychophysiology, 51(7), 673–684. https://doi.org/10.1111/psyp.2014.51.issue-7
  • Yaffe, R. B., Kerr, M. S. D., Damera, S., Sarma, S. V., Inati, S. K., & Zaghloul, K. A. (2014). Reinstatement of distributed cortical oscillations occurs with precise spatiotemporal dynamics during successful memory retrieval. Proceedings of the National Academy of Sciences, 111(52), 18727–18732. https://doi.org/10.1073/pnas.1417017112
  • Yick, Y. Y., Buratto, L. G., & Schaefer, A. (2015). The effects of negative emotion on encoding-related neural activity predicting item and source recognition. Neuropsychologia, 73, 48–59. https://doi.org/10.1016/j.neuropsychologia.2015.04.030
  • Yntema, D. B., & Trask, F. P. (1963). Recall as a search process. Journal of Verbal Learning and Verbal Behavior, 2(1), 65–74. https://doi.org/10.1016/S0022-5371(63)80069-9
  • Yonelinas, A. P., Dobbins, I. G., Szymanski, M. D., Dhaliwal, H. S., & King, S. (1996). Signal-detection, threshold, and dual-process models of recognition memory: ROCs and conscious recollection. Consciousness and Cognition: An International Journal, 5(4), 418–441. https://doi.org/10.1006/ccog.1996.0026
  • Yonelinas, A. P., & Ritchey, M. (2015). The slow forgetting of emotional episodic memories: An emotional binding account. Trends in Cognitive Sciences, 19(5), 259–267. https://doi.org/10.1016/j.tics.2015.02.009
  • Zacks, J. M., Speer, N. K., Swallow, K. M., Braver, T. S., & Reynolds, J. R. (2007). Event perception: A mind-brain perspective. Psychological Bulletin, 133(2), 273. https://doi.org/10.1037/0033-2909.133.2.273
  • Zhang, Q., Griffiths, T. L., & Norman, K. A. (2022). Optimal policies for free recall. Psychological Review, 130(4), 1104–1124. https://doi.org/10.1037/rev0000375
  • Zhou, Z., Singh, D., Tandoc, M. C., & Schapiro, A. C. (2023a). Building integrated representations through interleaved learning. Journal of Experimental Psychology: General, 152(9), 2666–2684. https://doi.org/10.1037/xge0001415
  • Zhou, C. Y., Talmi, D., Daw, N. D., & Mattar, M. G. (2023b). Episodic retrieval for model-based evaluation in sequential decision tasks. PsyArXiv.
  • Ziv, Y., Burns, L. D., Cocker, E. D., Hamel, E. O., Ghosh, K. K., Kitch, L. J., El Gamal, A., & Schnitzer, M. J. (2013). Long-term dynamics of CA1 hippocampal place codes. Nature Neuroscience, 16(3), 264–266. https://doi.org/10.1038/nn.3329
  • Zuo, S., Wang, C., Wang, L., Jin, Z., Kusunoki, M., & Kwok, S. C. (2023). Neural signatures for temporal-order memory in the medial posterior parietal cortex. bioRxiv, 2023–08.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.