160
Views
1
CrossRef citations to date
0
Altmetric
Articles

Plasma α-Actin as an Early Marker of Muscle Damage After Repeated Bouts of Eccentric Cycling

Pages 853-860 | Received 24 Nov 2021, Accepted 25 Mar 2022, Published online: 06 May 2022

References

  • Asp, S., Daugaard, J. R., & Richter, E. A. (1995). Eccentric exercise decreases glucose transporter GLUT4 protein in human skeletal muscle. The Journal of Physiology, 482(Pt. 3), 705–712. https://doi.org/10.1113/jphysiol.1995.sp020553
  • Brown, S. J., Child, R. B., Day, S. H., & Donnelly, A. E. (1997). Indices of skeletal muscle damage and connective tissue breakdown following eccentric muscle contractions. European Journal of Applied Physiology, 75(4), 369–374. https://doi.org/10.1007/s004210050174
  • Brown, S., Day, S., & Donnelly, A. (1999). Indirect evidence of human skeletal muscle damage and collagen breakdown after eccentric muscle actions. Journal of Sports Sciences, 17(5), 397–402. https://doi.org/10.1080/026404199365911
  • Bruunsgaard, H., Galbo, H., Halkjaer-Kristensen, J., Johansen, T. L., MacLean, D. A., & Pedersen, B. K. (1997). Exercise-induced increase in serum interleukin-6 in humans is related to muscle damage. The Journal of Physiology, 499(3), 833–841. https://doi.org/10.1113/jphysiol.1997.sp021972
  • Burch, P. M., & Glaab, W. (2016). Novel translational biomarkers of skeletal muscle injury. In Y. Will, J. E. McDuffie, A. J. Olaharski, & B. D. Jeffy (Eds.), Drug discovery toxicology: From target assessment to translational biomarkers (pp. 407–415). Wiley. https://doi.org/10.1002/9781119053248.ch26
  • Christiansen, D., Bishop, D. J., Broatch, J. R., Bangsbo, J., McKenna, M. J., & Murphy, R. M. (2018). Cold-water immersion after training sessions: Effects on fiber type-specific adaptations in muscle K + transport proteins to sprint-interval training in men. Journal of Applied Physiology, 125(2), 429–444. https://doi.org/10.1152/japplphysiol.00259.2018
  • Clarkson, P. M., Nosaka, K., & Braun, B. (1992). Muscle function after exercise-induced muscle damage and rapid adaptation. Medicine & Science in Sports & Exercise, 24(5), 512–520. https://doi.org/10.1249/00005768-199205000-00004
  • Craig-Schmidt, M. C., Robson, R. M., Goll, D. E., & Stromer, M. H. (1981). Effect of alpha-actinin on actin structure. Release of bound nucleotide. Biochimica Et Biophysica Acta (BBA) - Protein Structure, 670(1), 9–16. https://doi.org/10.1016/0005-2795(81)90042-8
  • Damas, F., Nosaka, K., Libardi, C. A., Chen, T. C., & Ugrinowitsch, C. (2016). Susceptibility to exercise-induced muscle damage: A cluster analysis with a large sample. International Journal of Sports Medicine, 37(8), 633–640. https://doi.org/10.1055/s-0042-100281
  • Evans, W. J., Meredith, C. N., Cannon, J. G., Dinarello, C. A., Frontera, W. R., Hughes, V. A., Jones, B. H., & Knuttgen, H. G. (1986). Metabolic changes following eccentric exercise in trained and untrained men. Journal of Applied Physiology, 61(5), 1864–1868. https://doi.org/10.1152/jappl.1986.61.5.1864
  • Friden, J., Sjostrom, M., & Ekblom, B. (1983). Myofibrillar damage following intense eccentric exercise in man. International Journal of Sports Medicine, 4(3), 170–176. https://doi.org/10.1055/s-2008-1026030
  • Gonzalez-Bartholin, R., Mackay, K., Valladares, D., Zbinden-Foncea, H., Nosaka, K., & Penailillo, L. (2019). Changes in oxidative stress, inflammation and muscle damage markers following eccentric versus concentric cycling in older adults. European Journal of Applied Physiology, 119(10), 2301–2312. https://doi.org/10.1007/s00421-019-04213-7
  • Herzog, W. (2018). The multiple roles of titin in muscle contraction and force production. Biophysical Reviews, 10(4), 1187–1199. https://doi.org/10.1007/s12551-017-0395-y
  • Hirose, L., Nosaka, K., Newton, M., Laveder, A., Kano, M., Peake, J., & Suzuki, K. (2004). Changes in inflammatory mediators following eccentric exercise of the elbow flexors. Exercise Immunology Review, 10, 75–90.
  • Horswill, C. A., Layman, D. K., Boileau, R. A., Williams, B. T., & Massey, B. H. (1988). Excretion of 3-methylhistidine and hydroxyproline following acute weight-training exercise. International Journal of Sports Medicine, 9(4), 245–248. https://doi.org/10.1055/s-2007-1025014
  • Hyldahl, R. D., Chen, T. C., & Nosaka, K. (2017). Mechanisms and mediators of the skeletal muscle repeated bout effect. Exercise and Sport Sciences Reviews, 45(1), 24–33. https://doi.org/10.1249/JES.0000000000000095
  • Kanda, K., Sugama, K., Hayashida, H., Sakuma, J., Kawakami, Y., Miura, S., Yoshioka, H., Mori, Y., & Suzuki, K. (2013). Eccentric exercise-induced delayed-onset muscle soreness and changes in markers of muscle damage and inflammation. Exercise Immunology Review, 19, 72–85.
  • Klossner, S., Dapp, C., Schmutz, S., Vogt, M., Hoppeler, H., & Fluck, M. (2007). Muscle transcriptome adaptations with mild eccentric ergometer exercise. Pflügers Archiv - European Journal of Physiology, 455(3), 555–562. https://doi.org/10.1007/s00424-007-0303-6
  • Kues, J. M., Rothstein, J. M., & Lamb, R. L. (1992). Obtaining reliable measurements of knee extensor torque produced during maximal voluntary contractions: An experimental investigation. Physical Therapy, 72(7), 492–501. https://doi.org/10.1093/ptj/72.7.492
  • Lakens, D. (2013). Calculating and reporting effect sizes to facilitate cumulative science: A practical primer for t-tests and ANOVAs. Frontiers in Psychology, 4, Article 863. https://doi.org/10.3389/fpsyg.2013.00863
  • Leroy, E. C., & Sjoerdsma, A. (1965). Clinical significance of a hydroxyproline-containing protein in human plasma. Journal of Clinical Investigation, 44(6), 914–919. https://doi.org/10.1172/JCI105208
  • Lipski, M., Abbiss, C. R., & Nosaka, K. (2018). Cardio-pulmonary responses to incremental eccentric and concentric cycling tests to task failure. European Journal of Applied Physiology, 118(5), 947–957. https://doi.org/10.1007/s00421-018-3826-y
  • Maffiuletti, N. A., Bizzini, M., Desbrosses, K., Babault, N., & Munzinger, U. (2007). Reliability of knee extension and flexion measurements using the Con-Trex isokinetic dynamometer. Clinical Physiology and Functional Imaging, 27(6), 346–353. https://doi.org/10.1111/j.1475-097X.2007.00758.x
  • Martínez-Amat, A., Boulaiz, H., Prados, J., Marchal, J. A., Padial Puche, P., Caba, O., Rodríguez-Serrano, F., & Aránega, A. (2005). Release of alpha-actin into serum after skeletal muscle damage. British Journal of Sports Medicine, 39(11), 830–834. https://doi.org/10.1136/bjsm.2004.017566
  • Martinez-Amat, A., Marchal Corrales, J. A., Rodriguez Serrano, F., Boulaiz, H., Prados Salazar, J. C., Hita Contreras, F., Caba Perez, O., Carrillo Delgado, E., Martin, I., & Aranega Jimenez, A. (2007). Role of alpha-actin in muscle damage of injured athletes in comparison with traditional markers. British Journal of Sports Medicine, 41(7), 442–446. https://doi.org/10.1136/bjsm.2006.032730
  • Martínez-Amat, A., Marchal, J., Prados, J., Hita, F., Rodríguez-Serrano, F., Boulaiz, H., Velez, C., Caba, O., Velez, C., Ortiz, R., Rama, A. R., Aránega, A., & Martín, C. (2010). Release of muscle α-actin into serum after intensive exercise. Biology of Sport, 27(4), 263–268. https://doi.org/10.5604/20831862.927491
  • Mavropalias, G., Calapre, L., Morici, M., Koeda, T., Poon, W. C. K., Barley, O. R., Gray, E., Blazevich, A. J., & Nosaka, K. (2021). Changes in plasma hydroxyproline and plasma cell-free DNA concentrations after higher- versus lower-intensity eccentric cycling. European Journal of Applied Physiology, 121(4), 1087–1097. https://doi.org/10.1007/s00421-020-04593-1
  • North, K. N., & Laing, N. G. (2008). Skeletal muscle alpha-actin diseases. In N. G. Laing (Ed.), The sarcomere and skeletal muscle disease (pp. 15–27). Springer. https://doi.org/10.1007/978-0-387-84847-1_2
  • Nosaka, K., & Clarkson, P. M. (1995). Muscle damage following repeated bouts of high force eccentric exercise. Medicine & Science in Sports & Exercise, 27(9), 1263–1269. https://doi.org/10.1249/00005768-199509000-00005
  • Nosaka, K., & Clarkson, P. M. (1996). Variability in serum creatine kinase response after eccentric exercise of the elbow flexors. International Journal of Sports Medicine, 17(2), 120–127. https://doi.org/10.1055/s-2007-972819
  • Peake, J. M., Suzuki, K., Hordern, M., Wilson, G., Nosaka, K., & Coombes, J. S. (2005). Plasma cytokine changes in relation to exercise intensity and muscle damage. European Journal of Applied Physiology, 95(5–6), 514–521. https://doi.org/10.1007/s00421-005-0035-2
  • Penailillo, L., Blazevich, A. J., & Nosaka, K. (2015). Muscle fascicle behavior during eccentric cycling and its relation to muscle soreness. Medicine & Science in Sports & Exercise, 47(4), 708–717. https://doi.org/10.1249/MSS.0000000000000473
  • Penailillo, L., Blazevich, A., Numazawa, H., & Nosaka, K. (2013). Metabolic and muscle damage profiles of concentric versus repeated eccentric cycling. Medicine & Science in Sports & Exercise, 45(9), 1773–1781. https://doi.org/10.1249/MSS.0b013e31828f8a73
  • Penailillo, L., Mackay, K., & Abbiss, C. R. (2018). Rating of perceived exertion during concentric and eccentric cycling: Are we measuring effort or exertion? International Journal of Sports Physiology and Performance, 13(4), 517–523. https://doi.org/10.1123/ijspp.2017-0171
  • Penailillo, L., Santander, M., Zbinden-Foncea, H., & Jannas-Vela, S. (2020). Metabolic demand and indirect markers of muscle damage after eccentric cycling with blood flow restriction. Research Quarterly for Exercise and Sport, 91(4), 705–712. https://doi.org/10.1080/02701367.2019.169923
  • Pimenta, E. M., Coelho, D. B., Cruz, I. R., Morandi, R. F., Veneroso, C. E., de Azambuja Pussieldi, G., Santos Carvalho, M. R., Silami-Garcia, E., & De Paz Fernandez, J. A. (2012). The ACTN3 genotype in soccer players in response to acute eccentric training. European Journal of Applied Physiology, 112(4), 1495–1503. https://doi.org/10.1007/s00421-011-2109-7
  • Rebalka, I. A., & Hawke, T. J. (2014). Potential biomarkers of skeletal muscle damage. Biomarkers in Medicine, 8(3), 375–378. https://doi.org/10.2217/bmm.13.163
  • Rodenburg, J., Bar, P., & De Boer, R. (1993). Relations between muscle soreness and biochemical and functional outcomes of eccentric exercise. Journal of Applied Physiology, 74(6), 2976–2983. https://doi.org/10.1152/jappl.1993.74.6.2976
  • Shaw, G., Lee-Barthel, A., Ross, M. L., Wang, B., & Baar, K. (2017). Vitamin C-enriched gelatin supplementation before intermittent activity augments collagen synthesis. The American Journal of Clinical Nutrition, 105(1), 136–143. https://doi.org/10.3945/ajcn.116.138594
  • Tekus, E., Vaczi, M., Horvath-Szalai, Z., Ludany, A., Koszegi, T., & Wilhelm, M. (2017). Plasma actin, gelsolin and orosomucoid levels after eccentric exercise. Journal of Human Kinetics, 56(1), 99–108. https://doi.org/10.1515/hukin-2017-0027
  • Tofas, T., Jamurtas, A. Z., Fatouros, I., Nikolaidis, M. G., Koutedakis, Y., Sinouris, E. A., Papageorgakopoulou, N., & Theocharis, D. A. (2008). Plyometric exercise increases serum indices of muscle damage and collagen breakdown. Journal of Strength and Conditioning Research, 22(2), 490–496. https://doi.org/10.1519/JSC.0b013e31816605a0
  • Toft, A. D., Jensen, L. B., Bruunsgaard, H., Ibfelt, T., Halkjaer-Kristensen, J., Febbraio, M., & Pedersen, B. K. (2002). Cytokine response to eccentric exercisein young and elderly humans. American Journal of Physiology-Cell Physiology, 283(1), C289–C295. https://doi.org/10.1152/ajpcell.00583.2001
  • Valladares-Ide, D., Penailillo, L., Collao, N., Marambio, H., Deldicque, L., & Zbinden-Foncea, H. (2019). Activation of protein synthesis, regeneration, and MAPK signaling pathways following repeated bouts of eccentric cycling. American Journal of Physiology-Endocrinology and Metabolism, 317(6), E1131–E1139. https://doi.org/10.1152/ajpendo.00216.2019

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.