2,220
Views
0
CrossRef citations to date
0
Altmetric
Articles

Worst Case Scenarios in Soccer Training and Competition: Analysis of Playing Position, Congested Periods, and Substitutes

Received 04 Apr 2023, Accepted 28 Nov 2023, Published online: 15 Dec 2023

References

  • Barrett, S., Varley, M. C., Hills, S. P., Russell, M., Reeves, M., Hearn, A., & Towlson, C. (2020). Understanding the influence of the head coach on soccer training drills—An 8 season analysis. Applied Sciences, 10(22), 8149. https://doi.org/10.3390/app10228149
  • Beato, M., Drust, B., & Iacono, A. D. (2021). Implementing high-speed running and sprinting training in professional soccer. International Journal of Sports Medicine, 42(4), 295–299. https://doi.org/10.1055/a-1302-7968
  • Bengtsson, H., Ekstrand, J., Waldén, M., & Hägglund, M. (2018). Muscle injury rate in professional football is higher in matches played within 5 days since the previous match: A 14-year prospective study with more than 130 000 match observations. BritishJournal of Sports Medicine, 52(17), 1116–1122. https://doi.org/10.1136/bjsports-2016-097399
  • Bortnik, L., Bruce-Low, S., Burger, J., Alexander, J., Harper, D., Carling, C., & Rhodes, D. (2023). Transitional activities in elite football: Frequency, type, effect on match outcome and the novel concept of clusters. Research & Investigations in Sports Medicine, 9(5), 872–886. https://doi.org/10.31031/RISM.2023.09.000721
  • Bortnik, L., Bruce-Low, S., Burger, J., Alexander, J., Harper, D., Morgans, R., Carling, C., McDaid, K., & Rhodes, D. (2024). Physical match demands across different playing positions during transitional play and high-pressure activities in elite soccer. Biology of Sport, 41(2), 73–82. https://doi.org/10.5114/biolsport.2024.131815
  • Bortnik, L., Burger, J., Morgans, R., & Rhodes, D. (2023). Utilisation of transitional clusters exhibited within soccer game play to inform training design: Are we meeting the required demands? Scientific Journal of Sport and Performance, 2(4), 439–453. https://doi.org/10.55860/ZURN6735
  • Bortnik, L., Burger, J., & Rhodes, D. (2022). The mean and peak physical demands during transitional play and high pressure activities in elite football. Biology of Sport, 39(4), 1055–1064. https://doi.org/10.5114/biolsport.2023.112968
  • Bradley, P. S., & Noakes, T. D. (2013). Match running performance fluctuations in elite soccer: Indicative of fatigue, pacing or situational influences? Journal of Sports Sciences, 31(15), 1627–1638. https://doi.org/10.1080/02640414.2013.796062
  • Buchheit, M., & Laursen, P. B. (2013). High-intensity interval training, solutions to the programming puzzle. Part II: Anaerobic energy, neuromuscular load and practical applications. Sports Medicine, 43(10), 927–954. https://doi.org/10.1007/s40279-013-0066-5
  • Carling, C., Bloomfield, J., Nelsen, L., & Reilly, T. (2008). The role of motion analysis in elite soccer: Contemporary performance measurement techniques and work rate data. Sports Medicine, 38(10), 839–862. https://doi.org/10.2165/00007256-200838100-00004
  • Carling, C., Le Gall, F., & Dupont, G. (2012). Are physical performance and injury risk in a professional soccer team in match-play affected over a prolonged period of fixture congestion? International Journal of Sports Medicine, 33(1), 36–42. https://doi.org/10.1055/s-0031-1283190
  • Chena, M., Morcillo-Losa, J. A., Rodríguez-Hernández, M. L., Asín-Izquierdo, I., Pastora-Linares, B., & Carlos Zapardiel, J. (2022). Workloads of different soccer-specific drills in professional players. Journal of Human Kinetics, 84, 135–147. https://doi.org/10.2478/hukin-2022-000075
  • Cohen, J. (1988). Statistical power analysis for the behavioral sciences. Routledge Academic. https://doi.org/10.4324/9780203771587
  • Delaney, J., Thornton, H., Rowell, A., Dascombe, J., Aughey, R., & Duthie, G. (2018). Modelling the decrement in running intensity within professional soccer players. Science and Medicine in Football, 2(2), 86–92. https://doi.org/10.1080/24733938.2017.1383623
  • Delaney, J., Thornton, H., Rowell, A., Dascombe, J., Aughey, R., & Duthie, G. (2018). Modelling the decrement in running intensity within professional soccer players. Science and Medicine in Football, 2(2), 86–92. https://doi.org/10.1080/24733938.2017.1383623
  • Djaoui, L., Owen, A., Newton, M., Nikolaidis, P. T., Dellal, A., & Chamari, K. (2022). Effects of congested match periods on acceleration and deceleration profiles in professional soccer. Biology of Sport, 39(2), 307–317. https://doi.org/10.5114/biolsport.2022.103725
  • Ekstrand, J., Ueblacker, P., Van Zoest, W., Verheijen, R., Vanhecke, B., van Wijk, M., & Bengtsson, H. (2023). Risk factors for hamstring muscle injury in male elite football: Medical expert experience and conclusions from 15 European Champions League clubs. BMJ Open Sport and Exercise Medicine, 9(1), e001461. https://doi.org/10.1136/bmjsem-2022-001461
  • Faude, O., Koch, T., & Meyer, T. (2012). Straight sprinting is the most frequent action in goal situations in professional football. Journal of Sports Sciences, 30(7), 625–631. https://doi.org/10.1080/02640414.2012.665940
  • Fereday, K., Hills, S. P., Russell, M., Smith, J., Cunningham, D. J., Shearer, D., McNarry, M., & Kilduff, L. P. (2020). A comparison of rolling averages versus discrete time epochs for assessing the worst-case scenario locomotor demands of professional soccer match-play. Journal of Science and Medicine in Sport, 23(8), 764–769. https://doi.org/10.1016/j.jsams.2020.01.002
  • Ferraz, R., Gonçalves, B., Coutinho, D., Marinho, D. A., Sampaio, J., Marques, M. C., & Ardigò, L. P. (2018). Pacing behaviour of players in team sports: Influence of match status manipulation and task duration knowledge. PloS one, 13(2), e0192399. https://doi.org/10.1371/journal.pone.0192399
  • Gregson, W., Drust, B., Atkinson, G., & Salvo, V. D. (2010). Match-to-match variability of high-speed activities in premier league soccer. International Journal of Sports Medicine, 31(4), 237–242. https://doi.org/10.1055/s-0030-1247546
  • Harper, D. J., Carling, C., & Kiely, J. (2019). High-intensity acceleration and deceleration demands in elite team sports competitive match play: A systematic review and meta-analysis of observational studies. Sports Medicine, 49(12), 1923–1947. https://doi.org/10.1007/s40279-019-01170-1
  • Hills, S. P., Aben, H. G. J., Starr, D. P., Kilduff, L. P., Arent, S. M., Barwood, M. J., Radcliffe, J. N., Cooke, C. B., & Russell, M. (2021). Body temperature and physical performance responses are not maintained at the time of pitch-entry when typical substitute-specific match-day practices are adopted before simulated soccer match-play. Journal of Science and Medicine in Sport, 24(5), 511–516. https://doi.org/10.1016/j.jsams.2020.11.013
  • Hills, S. P., Barrett, S., Thoseby, B., Kilduff, L. P., Barwood, M. J., Radcliffe, J. N., Cooke, C. B., & Russell, M. (2022). Quantifying the peak physical match-play demands of professional soccer substitutes following pitch-entry: Assessing contextual influences. Research Quarterly for Exercise and Sport, 93(2), 270–281. https://doi.org/10.1080/02701367.2020.1823308
  • Jiménez, S. L., Mateus, N., Weldon, A., Bustamante-Sánchez, Á., Kelly, A. L., & Sampaio, J. (2022). Analysis of the most demanding passages of play in elite youth soccer: A comparison between congested and non-congested fixture schedules. Science and Medicine in Football, 7(4), 358–365. https://doi.org/10.1080/24733938.2022.2117404
  • Ju, W., Doran, D., Hawkins, R., Evans, M., Laws, A., & Bradley, P. S. (2023). Contextualised high-intensity running profiles of elite football players with reference to general and specialised tactical roles. Biology of Sport, 40(1), 291–301. https://doi.org/10.5114/biolsport.2023.116003
  • Julian, R., Page, R. M., & Harper, L. D. (2021). The effect of fixture congestion on performance during professional male soccer match-play: A systematic critical review with meta-analysis. Sports Medicine, 51(2), 255–273. https://doi.org/10.1007/s40279-020-01359-9
  • Lacome, M., Simpson, B. M., Cholley, Y., Lambert, P., & Buchheit, M. (2018). Small-sided games in elite soccer: Does one size fit all? International Journal of Sports Physiology and Performance, 13(5), 568–576. https://doi.org/10.1123/ijspp.2017-0214
  • Liu, H., Wang, L., Huang, G., Zhang, H., & Mao, W. (2020). Activity profiles of full-match and substitution players in the 2018 FIFA World Cup. European Journal of Sport Science, 20(5), 599–605. https://doi.org/10.1080/17461391.2019.1659420
  • Los Arcos, A., Mendez-Villanueva, A., & Martínez-Santos, R. (2017). In-season training periodization of professional soccer players. Biology of Sport, 34(2), 149–155. https://doi.org/10.5114/biolsport.2017.64588
  • Malone, J. J., Lovell, R., Varley, M. C., & Coutts, A. J. (2017). Unpacking the black box: Applications and considerations for using GPS devices in sport. International Journal of Sports Physiology and Performance, 12(Suppl 2), 18–26. https://doi.org/10.1123/ijspp.2016-0236
  • Martín-García, A., Casamichana, D., Díaz, A. G., Cos, F., & Gabbett, T. J. (2018). Positional differences in the most demanding passages of play in football competition. Journal of Sports Science & Medicine, 17(4), 563–570.
  • Martín-García, A., Castellano, J., Diaz, A. G., Cos, F., & Casamichana, D. (2019). Positional demands for various-sided games with goalkeepers according to the most demanding passages of match play in football. Biology of Sport, 36(2), 171–180. https://doi.org/10.5114/biolsport.2019.83507
  • Mohr, M., Draganidis, D., Chatzinikolaou, A., Barbero-Álvarez, J. C., Castagna, C., Douroudos, I., Avloniti, A., Margeli, A., Papassotiriou, I., Flouris, A. D., Jamurtas, A. Z., Krustrup, P., & Fatouros, I. G. (2016). Muscle damage, inflammatory, immune and performance responses to three football games in 1 week in competitive male players. European Journal of Applied Physiology, 116(1), 179–193. https://doi.org/10.1007/s00421-015-3245-2
  • Moniz, F., Scaglia, A., Sarmento, H., García-Calvo, T., & Teoldo, I. (2020). Effect of an inside floater on soccer players tactical behaviour in small sided and conditioned games. Journal of Human Kinetics, 71(1), 167–177. https://doi.org/10.2478/hukin-2019-0080
  • Morgans, R., Rhodes, D., Teixeira, J., Modric, T., Versic, S., & Oliveira, R. (2023). Quantification of training load across two competitive seasons in elite senior and youth male soccer players from an English premiership club. Biology of Sport, 40(4), 1197–1205. https://doi.org/10.5114/biolsport.2023.126667
  • Nicolella, D. P., Torres-Ronda, L., Saylor, K. J., Schelling, X., & Ardigò, L. P. (2018). Validity and reliability of an accelerometer-based player tracking device. PloS one, 13(2), e0191823. https://doi.org/10.1371/journal.pone.0191823
  • Nobari, H., Silva, A. F., Vali, N., & Clemente, F. M. (2023). Comparing the physical effects of combining small-sided games with short high-intensity interval training or repeated sprint training in youth soccer players: A parallel-study design. International Journal of Sports Science & Coaching, 18(4), 1142–1154. https://doi.org/10.1177/17479541221101842
  • Novak, A. R., Impellizzeri, F. M., Trivedi, A., Coutts, A. J., & McCall, A. (2021). Analysis of the worst-case scenarios in an elite football team: Towards a better understanding and application. Journal of Sports Sciences, 39(16), 1850–1859. https://doi.org/10.1080/02640414.2021.1902138
  • Oliva-Lozano, J. M., Gómez-Carmona, C. D., Fortes, V., & Pino-Ortega, J. (2022). Effect of training day, match, and length of the microcycle on workload periodization in professional soccer players: A full-season study. Biology of Sport, 39(2), 397–406. https://doi.org/10.5114/biolsport.2022.106148
  • Oliva-Lozano, J. M., Riboli, A., Fortes, V., & Muyor, J. M. (2023). Monitoring physical match performance relative to peak locomotor demands: Implications for training professional soccer players. Biology of Sport, 40(2), 553–560. https://doi.org/10.5114/biolsport.2023.116450
  • Oliva-Lozano, J. M., Rojas-Valverde, D., Gómez-Carmona, C. D., Fortes, V., & Pino-Ortega, J. (2020). Impact of contextual variables on the representative external load profile of Spanish professional soccer match-play: A full season study. European Journal of Sport Science, 21(4), 497–506. https://doi.org/10.1080/17461391.2020.1751305
  • Rhodes, D., Valassakis, S., Bortnik, L., Eaves, R., Harper, D., & Alexander, J. (2021). The effect of high-intensity accelerations and decelerations on match outcome of an elite English league two football team. International Journal of Environmental Research and Public Health, 18(18), 9913. https://doi.org/10.3390/ijerph18189913
  • Riboli, A., Esposito, F., & Coratella, G. (2021). The distribution of match activities relative to the maximal intensities in elite soccer players: Implications for practice. Research in Sports Medicine, 30(5), 463–474. https://doi.org/10.1080/15438627.2021.1895788
  • Riboli, A., Esposito, F., & Coratella, G. (2023). Technical and locomotor demands in elite soccer: Manipulating area per player during small-sided games to replicate official match demands. Biology of Sport, 40(3), 639–647. https://doi.org/10.5114/biolsport.2023.118338
  • Riboli, A., Semeria, M., Coratella, G., & Esposito, F. (2021). Effect of formation, ball in play and ball possession on peak demands in elite soccer. Biology of Sport, 38(2), 195–205. https://doi.org/10.5114/biolsport.2020.98450
  • Scott, M. T., Scott, T. J., & Kelly, V. G. (2016). The validity and reliability of global positioning systems in team sport: A brief review. Journal of Strength and Conditioning Research, 30(5), 1470–1490. https://doi.org/10.1519/JSC.0000000000001221
  • Sydney, M. G., Wollin, M., Chapman, D., Ball, N., & Mara, J. K. (2023). Substitute running outputs in elite youth male soccer players: Less peak but greater relative running outputs. Biology of Sport, 40(1), 241–248. https://doi.org/10.5114/biolsport.2023.112969
  • Thornton, H. R., Nelson, A. R., Delaney, J. A., Serpiello, F. R., & Duthie, G. M. (2019). Interunit reliability and effect of data-processing methods of global positioning systems. International Journal of Sports Physiology and Performance, 14(4), 432–438. https://doi.org/10.1123/ijspp.2018-0273
  • Thoseby, B., Govus, A. D., Clarke, A. C., Middleton, K. J., & Dascombe, B. J. (2022). Between-match variation of peak match running intensities in elite football. Biology of Sport, 39(4), 833–838. https://doi.org/10.5114/biolsport.2022.109456
  • Wass, J., Mernagh, D., Pollard, B., Stewart, P., Fox, W., Parmar, N., Jones, B., Kilduff, L., & Turner, A. (2019). A comparison of match demands using ball-in-play vs. whole match data in elite male youth soccer players. Science and Medicine in Football, 4, 142–147. https://doi.org/10.1080/24733938.2019.1682183
  • Weaving, D., Young, D., Riboli, A., Jones, B., & Coratella, G. (2022). The maximal intensity period: Rationalising its use in team sports practice. Sports Medicine - Open, 8(1), 128. https://doi.org/10.1186/s40798-022-00519-7
  • Whitehead, S., Till, K., Weaving, D., & Jones, B. (2018). The use of microtechnology to quantify the peak match demands of the football codes: A systematic review. Sports Medicine, 48(11), 2549–2575. https://doi.org/10.1007/s40279-018-0965-6