1,189
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Exercise Interventions for the Management of Sarcopenia: Possibilities and Challenges

, , , , , & ORCID Icon show all
Pages 654-677 | Received 20 Oct 2022, Accepted 29 May 2023, Published online: 09 Jun 2023

References

  • Santilli V, Bernetti A, Mangone M, Paoloni M. Clinical definition of sarcopenia. Clin Cases Miner Bone Metab. Sep 2014;11(3):177–180.
  • Volpi E, Nazemi R, Fujita S. Muscle tissue changes with aging. Curr Opin Clin Nutr Metab Care. Jul 2004;7(4):405–410. doi:10.1097/01.mco.0000134362.76653.b2.
  • Wackerhage H. Sarcopenia: Causes and Treatments. Dtsch Z Sportmed. 07/01 2017;2017(07–08):178–184. doi. doi:10.5960/dzsm.2017.289.
  • Anker SD, Morley JE, von Haehling S. Welcome to the ICD-10 code for sarcopenia. J Cachexia Sarcopenia Muscle. Dec 2016;7(5):512–514. doi:10.1002/jcsm.12147.
  • Rom O, Kaisari S, Aizenbud D, Reznick AZ. Lifestyle and sarcopenia-etiology, prevention, and treatment. Rambam Maimonides Med J. Oct 2012;3(4):e0024. doi:10.5041/RMMJ.10091.
  • Tan LJ, Liu SL, Lei SF, Papasian CJ, Deng HW. Molecular genetic studies of gene identification for sarcopenia. Hum Genet. Jan 2012;131(1):1–31. doi:10.1007/s00439-011-1040-7.
  • Dodds R, Denison HJ, Ntani G, et al. Birth weight and muscle strength: a systematic review and meta-analysis. J Nutr Health Aging. Jul 2012;16(7):609–615. doi:10.1007/s12603-012-0053-9.
  • Supriya R, Singh KP, Gao Y, Gu Y, Baker JS. Effect of Exercise on Secondary Sarcopenia: A Comprehensive Literature Review. Biology (Basel). Dec 30 2021;11(1):51. doi:10.3390/biology11010051.
  • Ali S, Garcia JM. Sarcopenia, cachexia and aging: diagnosis, mechanisms and therapeutic options - a mini-review. Gerontology. 2014;60(4):294–305. doi:10.1159/000356760.
  • Yeh WS, Chiang PL, Kee KM, et al. Pre-sarcopenia is the prognostic factor of overall survival in early-stage hepatoma patients undergoing radiofrequency ablation. Medicine (Baltimore). Jun 5 2020;99(23):e20455. doi:10.1097/MD.0000000000020455.
  • Cederholm T. Overlaps between Frailty and Sarcopenia Definitions. Nestle Nutr Inst Workshop Ser. 2015;83:65–69. doi:10.1159/000382063.
  • Visvanathan R, Chapman I. Preventing sarcopaenia in older people. Maturitas. Aug 2010;66(4):383–388. doi:10.1016/j.maturitas.2010.03.020.
  • Cruz-Jentoft AJ, Bahat G, Bauer J, et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. Jan 1 2019;48(1):16–31. doi:10.1093/ageing/afy169.
  • Malmstrom TK, Morley JE. SARC-F: a simple questionnaire to rapidly diagnose sarcopenia. J Am Med Dir Assoc. Aug 2013;14(8):531–532. doi:10.1016/j.jamda.2013.05.018.
  • Malmstrom TK, Miller DK, Simonsick EM, Ferrucci L, Morley JE. SARC-F: a symptom score to predict persons with sarcopenia at risk for poor functional outcomes. J Cachexia Sarcopenia Muscle. Mar 2016;7(1):28–36. doi:10.1002/jcsm.12048.
  • Mittal KR, Logmani FH. Age-related reduction in 8th cervical ventral nerve root myelinated fiber diameters and numbers in man. J Gerontol. Jan 1987;42(1):8–10. doi:10.1093/geronj/42.1.8.
  • Aagaard P, Suetta C, Caserotti P, Magnusson SP, Kjaer M. Role of the nervous system in sarcopenia and muscle atrophy with aging: strength training as a countermeasure. Scand J Med Sci Sports. Feb 2010;20(1):49–64. doi:10.1111/j.1600-0838.2009.01084.x.
  • Steindl A, Leitner J, Schwarz M, et al. Sarcopenia in Neurological Patients: Standard Values for Temporal Muscle Thickness and Muscle Strength Evaluation. JCM. Apr 28 2020;9(5):1272. doi:10.3390/jcm9051272.
  • Dionyssiotis Y, Prokopidis K, Trovas G, et al. Sarcopenic Obesity in Individuals With Neurodisabilities: The SarcObeNDS Study. Front Endocrinol (Lausanne). 2022;13:868298. doi:10.3389/fendo.2022.868298.
  • Atkins JL. Chapter 7 - Effects of Sarcopenic Obesity on Cardiovascular Disease and All-Cause Mortality. In: Walrand S, ed. Nutrition and Skeletal Muscle. London: Academic Press; 2019. p. 93–103.
  • Vecchio LM, Meng Y, Xhima K, Lipsman N, Hamani C, Aubert I. The Neuroprotective Effects of Exercise: Maintaining a Healthy Brain Throughout Aging. Brain Plast. Dec 12 2018;4(1):17–52. doi:10.3233/BPL-180069.
  • Allen MD, Dalton BH, Gilmore KJ, et al. Neuroprotective effects of exercise on the aging human neuromuscular system. Exp Gerontol. Sep 2021;152:111465. doi:10.1016/j.exger.2021.111465.
  • Addison O, Marcus RL, Lastayo PC, Ryan AS. Intermuscular fat: a review of the consequences and causes. Int J Endocrinol. 2014;2014:309570. doi:10.1155/2014/309570.
  • Farrow M, Biglands J, Tanner SF, et al. The effect of ageing on skeletal muscle as assessed by quantitative MR imaging: an association with frailty and muscle strength. Aging Clin Exp Res. Feb 2021;33(2):291–301. doi:10.1007/s40520-020-01530-2.
  • Miljkovic I, Kuipers AL, Cauley JA, et al. Greater Skeletal Muscle Fat Infiltration Is Associated With Higher All-Cause and Cardiovascular Mortality in Older Men. J Gerontol A Biol Sci Med Sci. Sep 2015;70(9):1133–1140. doi:10.1093/gerona/glv027.
  • Hamrick MW, McGee-Lawrence ME, Frechette DM. Fatty Infiltration of Skeletal Muscle: Mechanisms and Comparisons with Bone Marrow Adiposity. Front Endocrinol (Lausanne). 2016;7:69. doi:10.3389/fendo.2016.00069.
  • Perkisas S, De Cock AM, Verhoeven V, Vandewoude M. Intramuscular Adipose Tissue and the Functional Components of Sarcopenia in Hospitalized Geriatric Patients. Geriatrics (Basel). Feb 22 2017;2(1):11. doi:10.3390/geriatrics2010011.
  • Sinanan AC, Buxton PG, Lewis MP. Muscling in on stem cells. Biol Cell. Apr 2006;98(4):203–214. doi:10.1042/BC20050050.
  • Zamboni M, Gattazzo S, Rossi AP. Myosteatosis: a relevant, yet poorly explored element of sarcopenia. Eur Geriatr Med. Feb 2019;10(1):5–6. doi:10.1007/s41999-018-0134-3.
  • Perkisas S, Lamers S, Degerickx R, et al. The relation between mortality, intramuscular adipose tissue and sarcopenia in hospitalized geriatric patients. Eur Geriatr Med. Dec 2018;9(6):801–807. doi:10.1007/s41999-018-0110-y.
  • Ramirez-Velez R, Ezzatvar Y, Izquierdo M, Garcia-Hermoso A. Effect of exercise on myosteatosis in adults: a systematic review and meta-analysis. J Appl Physiol (1985). Jan 1 2021;130(1):245–255. doi:10.1152/japplphysiol.00738.2020.
  • Wang X, Proud CG. The mTOR pathway in the control of protein synthesis. Physiology (Bethesda). Oct 2006;21:362–369. doi:10.1152/physiol.00024.2006.
  • Volpi E, Kobayashi H, Sheffield-Moore M, Mittendorfer B, Wolfe RR. Essential amino acids are primarily responsible for the amino acid stimulation of muscle protein anabolism in healthy elderly adults. Am J Clin Nutr. Aug 2003;78(2):250–258. doi:10.1093/ajcn/78.2.250.
  • Cuthbertson D, Smith K, Babraj J, et al. Anabolic signaling deficits underlie amino acid resistance of wasting, aging muscle. Faseb J. Mar 2005;19(3):422–424. doi:10.1096/fj.04-2640fje.
  • Nygren J, Nair KS. Differential regulation of protein dynamics in splanchnic and skeletal muscle beds by insulin and amino acids in healthy human subjects. Diabetes. Jun 2003;52(6):1377–1385. doi:10.2337/diabetes.52.6.1377.
  • Morton RW, Traylor DA, Weijs PJM, Phillips SM. Defining anabolic resistance: implications for delivery of clinical care nutrition. Curr Opin Crit Care. Apr 2018;24(2):124–130. doi:10.1097/MCC.0000000000000488.
  • Breen L, Stokes KA, Churchward-Venne TA, et al. Two weeks of reduced activity decreases leg lean mass and induces "anabolic resistance" of myofibrillar protein synthesis in healthy elderly. J Clin Endocrinol Metab. Jun 2013;98(6):2604–2612. doi:10.1210/jc.2013-1502.
  • Short KR, Vittone JL, Bigelow ML, Proctor DN, Nair KS. Age and aerobic exercise training effects on whole body and muscle protein metabolism. Am J Physiol Endocrinol Metab. Jan 2004;286(1):E92–101. doi:10.1152/ajpendo.00366.2003.
  • Heath GW, Gavin JR, 3rd, Hinderliter JM, Hagberg JM, Bloomfield SA, Holloszy JO. Effects of exercise and lack of exercise on glucose tolerance and insulin sensitivity. J Appl Physiol Respir Environ Exerc Physiol. Aug 1983;55(2):512–517. doi:10.1152/jappl.1983.55.2.512.
  • Crane JD, Devries MC, Safdar A, Hamadeh MJ, Tarnopolsky MA. The effect of aging on human skeletal muscle mitochondrial and intramyocellular lipid ultrastructure. J Gerontol A Biol Sci Med Sci. Feb 2010;65(2):119–128. doi:10.1093/gerona/glp179.
  • Lanza IR, Short DK, Short KR, et al. Endurance exercise as a countermeasure for aging. Diabetes. Nov 2008;57(11):2933–2942. doi:10.2337/db08-0349.
  • Kumaran S, Panneerselvam KS, Shila S, Sivarajan K, Panneerselvam C. Age-associated deficit of mitochondrial oxidative phosphorylation in skeletal muscle: role of carnitine and lipoic acid. Mol Cell Biochem. Dec 2005;280(1-2):83–89. doi:10.1007/s11010-005-8234-z.
  • Barrientos A, Casademont J, Rotig A, et al. Absence of relationship between the level of electron transport chain activities and aging in human skeletal muscle. Biochem Biophys Res Commun. Dec 13 1996;229(2):536–539. doi:10.1006/bbrc.1996.1839.
  • Brierley EJ, Johnson MA, James OF, Turnbull DM. Effects of physical activity and age on mitochondrial function. QJM. Apr 1996;89(4):251–258. doi:10.1093/qjmed/89.4.251.
  • Geng T, Li P, Okutsu M, et al. PGC-1alpha plays a functional role in exercise-induced mitochondrial biogenesis and angiogenesis but not fiber-type transformation in mouse skeletal muscle. Am J Physiol Cell Physiol. Mar 2010;298(3):C572–9. doi:10.1152/ajpcell.00481.2009.
  • Smuder AJ, Kavazis AN, Min K, Powers SK. Exercise protects against doxorubicin-induced markers of autophagy signaling in skeletal muscle. J Appl Physiol (1985). Oct 2011;111(4):1190–1198. doi:10.1152/japplphysiol.00429.2011.
  • Kenny AM, Prestwood KM, Gruman CA, Marcello KM, Raisz LG. Effects of transdermal testosterone on bone and muscle in older men with low bioavailable testosterone levels. J Gerontol A Biol Sci Med Sci. May 2001;56(5):M266–72. doi:10.1093/gerona/56.5.m266.
  • Morley JE, Perry HM, 3rd, Kaiser FE, et al. Effects of testosterone replacement therapy in old hypogonadal males: a preliminary study. J Am Geriatr Soc. Feb 1993;41(2):149–152. doi:10.1111/j.1532-5415.1993.tb02049.x.
  • Hayes LD, Elliott BT. Short-Term Exercise Training Inconsistently Influences Basal Testosterone in Older Men: A Systematic Review and Meta-Analysis. Front Physiol. 2018;9:1878. doi:10.3389/fphys.2018.01878.
  • Adams GR, Haddad F. The relationships among IGF-1, DNA content, and protein accumulation during skeletal muscle hypertrophy. J Appl Physiol (1985). Dec 1996;81(6):2509–2516. doi:10.1152/jappl.1996.81.6.2509.
  • Lamberts SW, van den Beld AW, van der Lely AJ. The endocrinology of aging. Science. Oct 17 1997;278(5337):419–424. doi:10.1126/science.278.5337.419.
  • Basualto-Alarcon C, Jorquera G, Altamirano F, Jaimovich E, Estrada M. Testosterone signals through mTOR and androgen receptor to induce muscle hypertrophy. Med Sci Sports Exerc. Sep 2013;45(9):1712–1720. doi:10.1249/MSS.0b013e31828cf5f3.
  • Joanisse S, Nederveen JP, Baker JM, Snijders T, Iacono C, Parise G. Exercise conditioning in old mice improves skeletal muscle regeneration. Faseb J. Sep 2016;30(9):3256–3268. doi:10.1096/fj.201600143RR.
  • Shavlakadze T, McGeachie J, Grounds MD. Delayed but excellent myogenic stem cell response of regenerating geriatric skeletal muscles in mice. Biogerontology. Jun 2010;11(3):363–376. doi:10.1007/s10522-009-9260-0.
  • Brack AS, Conboy MJ, Roy S, et al. Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis. Science. Aug 10 2007;317(5839):807–810. doi:10.1126/science.1144090.
  • Chakravarthy MV, Davis BS, Booth FW. IGF-I restores satellite cell proliferative potential in immobilized old skeletal muscle. J Appl Physiol (1985). Oct 2000;89(4):1365–1379. doi:10.1152/jappl.2000.89.4.1365.
  • Conboy IM, Conboy MJ, Wagers AJ, Girma ER, Weissman IL, Rando TA. Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature. Feb 17 2005;433(7027):760–764. doi:10.1038/nature03260.
  • Ryall JG, Schertzer JD, Lynch GS. Cellular and molecular mechanisms underlying age-related skeletal muscle wasting and weakness. Biogerontology. Aug 2008;9(4):213–228. doi:10.1007/s10522-008-9131-0.
  • Jones AE, Price FD, Le Grand F, et al. Wnt/beta-catenin controls follistatin signalling to regulate satellite cell myogenic potential. Skelet Muscle. 2015;5:14. doi:10.1186/s13395-015-0038-6.
  • Conboy IM, Conboy MJ, Smythe GM, Rando TA. Notch-mediated restoration of regenerative potential to aged muscle. Science. Nov 28 2003;302(5650):1575–1577. doi:10.1126/science.1087573.
  • Conley KE, Amara CE, Jubrias SA, Marcinek DJ. Mitochondrial function, fibre types and ageing: new insights from human muscle in vivo. Exp Physiol. Mar 2007;92(2):333–339. doi:10.1113/expphysiol.2006.034330.
  • Kudryashova E, Kramerova I, Spencer MJ. Satellite cell senescence underlies myopathy in a mouse model of limb-girdle muscular dystrophy 2H. J Clin Invest. May 2012;122(5):1764–1776. doi:10.1172/JCI59581.
  • Zhou J, Freeman TA, Ahmad F, et al. GSK-3alpha is a central regulator of age-related pathologies in mice. J Clin Invest. Apr 2013;123(4):1821–1832. doi:10.1172/JCI64398.
  • Alcalde-Estevez E, Asenjo-Bueno A, Sosa P, et al. Endothelin-1 induces cellular senescence and fibrosis in cultured myoblasts. A potential mechanism of aging-related sarcopenia. Aging (Albany NY). Jun 22 2020;12(12):11200–11223. doi:10.18632/aging.103450.
  • Baker DJ, Wijshake T, Tchkonia T, et al. Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature. Nov 2 2011;479(7372):232–236. doi:10.1038/nature10600.
  • Kalinkovich A, Livshits G. Sarcopenic obesity or obese sarcopenia: A cross talk between age-associated adipose tissue and skeletal muscle inflammation as a main mechanism of the pathogenesis. Ageing Res Rev. May 2017;35:200–221. doi:10.1016/j.arr.2016.09.008.
  • Dent E, Morley JE, Cruz-Jentoft AJ, et al. International Clinical Practice Guidelines for Sarcopenia (ICFSR): Screening, Diagnosis and Management. J Nutr Health Aging. 2018;22(10):1148–1161. doi:10.1007/s12603-018-1139-9.
  • Chilibeck PD, Calder AW, Sale DG, Webber CE. A comparison of strength and muscle mass increases during resistance training in young women. Eur J Appl Physiol Occup Physiol. 1998;77(1-2):170–175. doi:10.1007/s004210050316.
  • Morley JE. Weight loss in older persons: new therapeutic approaches. Curr Pharm Des. 2007;13(35):3637–3647. doi:10.2174/138161207782794149.
  • Chen N, He X, Feng Y, Ainsworth BE, Liu Y. Effects of resistance training in healthy older people with sarcopenia: a systematic review and meta-analysis of randomized controlled trials. Eur Rev Aging Phys Act. 2021/11/11 2021;18(1):23. doi:10.1186/s11556-021-00277-7.
  • Seo MW, Jung SW, Kim SW, Lee JM, Jung HC, Song JK. Effects of 16 Weeks of Resistance Training on Muscle Quality and Muscle Growth Factors in Older Adult Women with Sarcopenia: A Randomized Controlled Trial. IJERPH. Jun 23 2021;18(13):6762. doi:10.3390/ijerph18136762.
  • Escriche-Escuder A, Fuentes-Abolafio IJ, Roldán-Jiménez C, Cuesta-Vargas AI. Effects of exercise on muscle mass, strength, and physical performance in older adults with sarcopenia: A systematic review and meta-analysis according to the EWGSOP criteria. Exp Gerontol. 2021/08/01/2021;151:111420. doi:10.1016/j.exger.2021.111420.
  • Bao W, Sun Y, Zhang T, et al. Exercise Programs for Muscle Mass, Muscle Strength and Physical Performance in Older Adults with Sarcopenia: A Systematic Review and Meta-Analysis. Aging Dis. Jul 2020;11(4):863–873. doi:10.14336/ad.2019.1012.
  • Seynnes OR, de Boer M, Narici MV. Early skeletal muscle hypertrophy and architectural changes in response to high-intensity resistance training. J Appl Physiol (1985). Jan 2007;102(1):368–373. doi:10.1152/japplphysiol.00789.2006.
  • Moro T, Tinsley G, Bianco A, et al. High intensity interval resistance training (HIIRT) in older adults: Effects on body composition, strength, anabolic hormones and blood lipids. Exp Gerontol. Nov 2017;98:91–98. doi:10.1016/j.exger.2017.08.015.
  • Johnston AP, De Lisio M, Parise G. Resistance training, sarcopenia, and the mitochondrial theory of aging. Appl Physiol Nutr Metab. Feb 2008;33(1):191–199. doi:10.1139/H07-141.
  • Brett L, Stapley P, Meedya S, Traynor V. Effect of physical exercise on physical performance and fall incidents of individuals living with dementia in nursing homes: a randomized controlled trial. Physiother Theory Pract. Jan 2021;37(1):38–51. doi:10.1080/09593985.2019.1594470.
  • Beckwée D, Delaere A, Aelbrecht S, et al. Exercise Interventions for the Prevention and Treatment of Sarcopenia. A Systematic Umbrella Review. J Nutr Health Aging. 2019;23(6):494–502. doi:10.1007/s12603-019-1196-8.
  • Franchi MV, Monti E, Carter A, et al. Bouncing Back! Counteracting Muscle Aging With Plyometric Muscle Loading. Front Physiol. 2019;10:178. doi:10.3389/fphys.2019.00178.
  • Gudlaugsson J, Aspelund T, Gudnason V, et al. [The effects of 6 months’ multimodal training on functional performance, strength, endurance, and body mass index of older individuals. Are the benefits of training similar among women and men?]. Laeknabladid. Jul 2013;99(7-8):331–337. manaetha fjolthornaettrar thornjalfunar a hreyfigetu, voethvakraft, thornol og likamsthornyngdar stuethul eldri einstaklinga. Eru ahrif thornjalfunar sambaerileg hja konum og korlum? doi:10.17992/lbl.2013.0708.504.
  • Liu S, Yu C, Xie L, Niu Y, Fu L. Aerobic Exercise Improves Mitochondrial Function in Sarcopenia Mice Through Sestrin2 in an AMPKalpha2-Dependent Manner. J Gerontol A Biol Sci Med Sci. Jun 14 2021;76(7):1161–1168. doi:10.1093/gerona/glab029.
  • Mersy DJ. Health benefits of aerobic exercise. Postgrad Med. Jul 1991;90(1):103–7, 110-102. doi:10.1080/00325481.1991.11700983.
  • Bagheri R, Robinson I, Moradi S, et al. Muscle Protein Synthesis Responses Following Aerobic-Based Exercise or High-Intensity Interval Training with or Without Protein Ingestion: A Systematic Review. Sports Med. 2022/11/01 2022;52(11):2713–2732. doi:10.1007/s40279-022-01707-x.
  • Yoo SZ, No MH, Heo JW, et al. Role of exercise in age-related sarcopenia. J Exerc Rehabil. Aug 2018;14(4):551–558. doi:10.12965/jer.1836268.134.
  • Taylor RS, Long L, Mordi IR, et al. Exercise-Based Rehabilitation for Heart Failure: Cochrane Systematic Review, Meta-Analysis, and Trial Sequential Analysis. JACC Heart Fail. Aug 2019;7(8):691–705. doi:10.1016/j.jchf.2019.04.023.
  • Fischer M, Vialleron T, Laffaye G, et al. Long-Term Effects of Whole-Body Vibration on Human Gait: A Systematic Review and Meta-Analysis. Front Neurol. 2019;10:627. doi:10.3389/fneur.2019.00627.
  • Chang SF, Lin PC, Yang RS, Yang RJ. The preliminary effect of whole-body vibration intervention on improving the skeletal muscle mass index, physical fitness, and quality of life among older people with sarcopenia. BMC Geriatr. Jan 17 2018;18(1):17. doi:10.1186/s12877-018-0712-8.
  • Wei N, Ng GYF. The effect of whole body vibration training on quadriceps voluntary activation level of people with age-related muscle loss (sarcopenia): a randomized pilot study. BMC Geriatr. Oct 11 2018;18(1):240. doi:10.1186/s12877-018-0923-z.
  • Lin P-C, Chang S-F, Ho H-Y. Effect of Whole-Body Vibration Training on the Physical Capability, Activities of Daily Living, and Sleep Quality of Older People with Sarcopenia. Applied Sciences. 2020;10(5):1695. doi:10.3390/app10051695.
  • Tomlinson BE, Irving D. The numbers of limb motor neurons in the human lumbosacral cord throughout life. J Neurol Sci. Nov 1977;34(2):213–219. doi:10.1016/0022-510x(77)90069-7.
  • Carlson BM. The Biology of Long-Term Denervated Skeletal Muscle. Eur J Transl Myol. Mar 31 2014;24(1):3293. doi:10.4081/ejtm.2014.3293.
  • Jang YC, Van Remmen H. Age-associated alterations of the neuromuscular junction. Exp Gerontol. Feb-Mar 2011;46(2-3):193–198. doi:10.1016/j.exger.2010.08.029.
  • Weisleder N, Brotto M, Komazaki S, et al. Muscle aging is associated with compromised Ca2+ spark signaling and segregated intracellular Ca2+ release. J Cell Biol. Aug 28 2006;174(5):639–645. doi:10.1083/jcb.200604166.
  • Xu L, Negro F, Rabotti C, Farina D, Mischi M. Investigation of The Neural Drive During Vibration Exercise by High-density Surface-electromyography. Annu Int Conf IEEE Eng Med Biol Soc. Jul 2019;2019:1944–1947. doi:10.1109/EMBC.2019.8857922.
  • Pope ZK, DeFreitas JM. The effects of acute and prolonged muscle vibration on the function of the muscle spindle’s reflex arc. Somatosens Mot Res. 2015;32(4):254–261. doi:10.3109/08990220.2015.1091770.
  • Wei N, Pang MY, Ng SS, Ng GY. Optimal frequency/time combination of whole body vibration training for developing physical performance of people with sarcopenia: a randomized controlled trial. Clin Rehabil. Oct 2017;31(10):1313–1321. doi:10.1177/0269215517698835.
  • Takarada Y, Takazawa H, Sato Y, Takebayashi S, Tanaka Y, Ishii N. Effects of resistance exercise combined with moderate vascular occlusion on muscular function in humans. J Appl Physiol (1985). Jun 2000;88(6):2097–2106. doi:10.1152/jappl.2000.88.6.2097.
  • Moritani T, Sherman WM, Shibata M, Matsumoto T, Shinohara M. Oxygen availability and motor unit activity in humans. Eur J Appl Physiol Occup Physiol. 1992;64(6):552–556. doi:10.1007/BF00843767.
  • Fry CS, Glynn EL, Drummond MJ, et al. Blood flow restriction exercise stimulates mTORC1 signaling and muscle protein synthesis in older men. J Appl Physiol (1985). May 2010;108(5):1199–1209. doi:10.1152/japplphysiol.01266.2009.
  • Yasuda T, Fujita S, Ogasawara R, Sato Y, Abe T. Effects of low-intensity bench press training with restricted arm muscle blood flow on chest muscle hypertrophy: a pilot study. Clin Physiol Funct Imaging. Sep 2010;30(5):338–343. doi:10.1111/j.1475-097X.2010.00949.x.
  • Lopes KG, Bottino DA, Farinatti P, et al. Strength training with blood flow restriction - a novel therapeutic approach for older adults with sarcopenia? A case report. Clin Interv Aging. 2019;14:1461–1469. doi:10.2147/CIA.S206522.
  • Loenneke JP, Kim D, Fahs CA, et al. The influence of exercise load with and without different levels of blood flow restriction on acute changes in muscle thickness and lactate. Clin Physiol Funct Imaging. Nov 2017;37(6):734–740. doi:10.1111/cpf.12367.
  • Nitzsche N, Schulze R, Weigand F, Hummer N, Schulz H. Comparison of an Acute Resistance Training on the Lactate Concentration with and without Blood Flow Restriction at Different Loads. Dtsch Z Sportmed. 11/01 2018;Volume 2018(11):337–343. doi. doi:10.5960/dzsm.2018.351.
  • Kawada S, Ishii N. Skeletal muscle hypertrophy after chronic restriction of venous blood flow in rats. Med Sci Sports Exerc. Jul 2005;37(7):1144–1150. doi:10.1249/01.mss.0000170097.59514.bb.
  • Patterson SD, Hughes L, Warmington S, et al. Blood Flow Restriction Exercise: Considerations of Methodology, Application, and Safety. Front Physiol. 2019;10:533. doi:10.3389/fphys.2019.00533.
  • Naito H, Powers SK, Demirel HA, Sugiura T, Dodd SL, Aoki J. Heat stress attenuates skeletal muscle atrophy in hindlimb-unweighted rats. J Appl Physiol (1985). Jan 2000;88(1):359–363. doi:10.1152/jappl.2000.88.1.359.
  • Tatsumi R, Hattori A, Ikeuchi Y, Anderson JE, Allen RE. Release of hepatocyte growth factor from mechanically stretched skeletal muscle satellite cells and role of pH and nitric oxide. Mol Biol Cell. Aug 2002;13(8):2909–2918. doi:10.1091/mbc.e02-01-0062.
  • Drummond MJ, Fujita S, Abe T, Dreyer HC, Volpi E, Rasmussen BB. Human muscle gene expression following resistance exercise and blood flow restriction. Med Sci Sports Exerc. Apr 2008;40(4):691–698. doi:10.1249/MSS.0b013e318160ff84.
  • Hackney KJ, Brown LWJ, Stone KA, Tennent DJ. The Role of Blood Flow Restriction Training to Mitigate Sarcopenia, Dynapenia, and Enhance Clinical Recovery. Techniques in Orthopaedics. 2018;33(2):98–105. doi:10.1097/BTO.0000000000000271.
  • Pinedo-Villanueva R, Westbury LD, Syddall HE, et al. Health Care Costs Associated With Muscle Weakness: A UK Population-Based Estimate. Calcif Tissue Int. Feb 2019;104(2):137–144. doi:10.1007/s00223-018-0478-1.
  • Robison JI, Rogers MA. Adherence to exercise programmes. Recommendations. Sports Med. Jan 1994;17(1):39–52. doi:10.2165/00007256-199417010-00004.
  • Dismore L, Hurst C, Sayer AA, Stevenson E, Aspray T, Granic A. Study of the Older Adults’ Motivators and Barriers Engaging in a Nutrition and Resistance Exercise Intervention for Sarcopenia: An Embedded Qualitative Project in the MIlkMAN Pilot Study. Gerontol Geriatr Med. Jan-Dec 2020;6:2333721420920398. doi:10.1177/2333721420920398.
  • Prokopidis K, Giannos P, Reginster JY, et al. Sarcopenia is associated with a greater risk of polypharmacy and number of medications: a systematic review and meta-analysis. J Cachexia Sarcopenia Muscle. Apr 2023;14(2):671–683. doi:10.1002/jcsm.13190.
  • Jensen LD, Andersen O, Hallin M, Petersen J. Potentially inappropriate medication related to weakness in older acute medical patients. Int J Clin Pharm. Jun 2014;36(3):570–580. doi:10.1007/s11096-014-9940-y.
  • Pasco JA, Mohebbi M, Holloway KL, Brennan-Olsen SL, Hyde NK, Kotowicz MA. Musculoskeletal decline and mortality: prospective data from the Geelong Osteoporosis Study. J Cachexia Sarcopenia Muscle. Jun 2017;8(3):482–489. doi:10.1002/jcsm.12177.
  • Wang X, Wu M. Research progress of gut microbiota and frailty syndrome. Open Med (Wars). 2021;16(1):1525–1536. doi:10.1515/med-2021-0364.
  • Verstraeten LMG, van Wijngaarden JP, Pacifico J, Reijnierse EM, Meskers CGM, Maier AB. Association between malnutrition and stages of sarcopenia in geriatric rehabilitation inpatients: RESORT. Clin Nutr. 2021;40(6):4090–4096. doi:10.1016/j.clnu.2021.02.007.
  • Curcio F, Ferro G, Basile C, et al. Biomarkers in sarcopenia: A multifactorial approach. Exp Gerontol. Dec 1 2016;85:1–8. doi:10.1016/j.exger.2016.09.007.
  • Berry SD, Ramachandran VS, Cawthon PM, et al. Procollagen type III N-terminal peptide (P3NP) and lean mass: a cross-sectional study. J Frailty Aging. 2013;2(3):1–6. doi:10.14283/jfa.2013.19.
  • Brown WJ, McCarthy MS. Sarcopenia: What Every NP Needs to Know. The Journal for Nurse Practitioners. 2015/09/01/2015;11(8):753–760. doi:10.1016/j.nurpra.2015.05.017.
  • Prescott M, Lilley-Kelly A, Cundill B, et al. Home-based Extended Rehabilitation for Older people (HERO): study protocol for an individually randomised controlled multi-centre trial to determine the clinical and cost-effectiveness of a home-based exercise intervention for older people with frailty as extended rehabilitation following acute illness or injury, including embedded process evaluation. Trials. Nov 8 2021;22(1):783. doi:10.1186/s13063-021-05778-5.
  • Tsekoura M, Billis E, Tsepis E, et al. The Effects of Group and Home-Based Exercise Programs in Elderly with Sarcopenia: A Randomized Controlled Trial. JCM. Nov 26 2018;7(12):480. doi:10.3390/jcm7120480.
  • Maruya K, Asakawa Y, Ishibashi H, Fujita H, Arai T, Yamaguchi H. Effect of a simple and adherent home exercise program on the physical function of community dwelling adults sixty years of age and older with pre-sarcopenia or sarcopenia. J Phys Ther Sci. Nov 2016;28(11):3183–3188. doi:10.1589/jpts.28.3183.
  • Eakin E, Reeves M, Lawler S, et al. Telephone counseling for physical activity and diet in primary care patients. Am J Prev Med. Feb 2009;36(2):142–149. doi:10.1016/j.amepre.2008.09.042.
  • Liang J, Zhang H, Zeng Z, et al. Lifelong Aerobic Exercise Alleviates Sarcopenia by Activating Autophagy and Inhibiting Protein Degradation via the AMPK/PGC-1alpha Signaling Pathway. Metabolites. May 18 2021;11(5):323. doi:10.3390/metabo11050323.
  • Zampieri S, Pietrangelo L, Loefler S, et al. Lifelong physical exercise delays age-associated skeletal muscle decline. J Gerontol A Biol Sci Med Sci. Feb 2015;70(2):163–173. doi:10.1093/gerona/glu006.
  • Dodds R, Kuh D, Aihie Sayer A, Cooper R. Physical activity levels across adult life and grip strength in early old age: updating findings from a British birth cohort. Age Ageing. Nov 2013;42(6):794–798. doi:10.1093/ageing/aft124.