1,094
Views
4
CrossRef citations to date
0
Altmetric
Article

Differences in macronutrient content of common aquatic macroinvertebrates available as prey for young-of-the-year Scaphirhynchus sturgeons in the lower Missouri River

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 191-202 | Received 28 Oct 2019, Accepted 05 May 2020, Published online: 19 May 2020

References

  • Anderson TR, Boersma M, Raubenheimer D. 2004. Stoichiometry: linking elements to biochemicals. Ecology. 85(5):1193–1202.
  • Anderson TR, Pond DW. 2000. Stoichiometric theory extended to micronutrients: comparison of the roles of essential fatty acids, carbon, and nitrogen in the nutrition of marine copepods. Limnol Oceanogr. 45(5):1162–1167.
  • Barnes CL, Hawlena D, McCue MD, Wilder SM. 2019. Consequences of prey exoskeleton content for predator feeding and digestion: black widow predation on larval versus adult mealworm beetles. Oecologia. 190(1):1–9.
  • Bryan JL, Wildhaber ML, Gladish DW. 2010. Power to detect trends in Missouri River fish populations within the Habitat Assessment Monitoring Program: U.S. Geological Survey Open-File Report 2010–1011.
  • Charnov EL. 1976. Optimal foraging, the marginal value theorem. Theor Popul Biol. 9(2):129–136.
  • Civiello AP, Gosch NJC, Gemeinhardt TR, Miller ML, Bonneau JL, Chojnacki KA, DeLonay AJ, Long JM. 2018. Diet and condition of age-0 Schaphirhynchus sturgeon: implications for shallow-water habitat restoration. North Am J Fish Manage. 38(6):1324–1338.
  • Covich AP, Palmer MA, Crowl TA. 1999. The role of benthic invertebrate species in freshwater ecosystems: zoobenthic species influence energy flows and nutrient cycling. BioScience. 49(2):119–127.
  • Cumminns KW, Wuycheck JC. 1971. Caloric equivalents for investigations in ecological energetics: with 2 figures and 3 tables in the text. Int Ver Theor Angew Limnol. Mitt. 18:1–158.
  • Deslauriers D, Heironimus LB, Chipps SR. 2016. Test of a foraging-bioenergetics model to evaluate growth dynamics of endangered pallid sturgeon (Scaphirhynchus albus). Ecol Model. 336:1–12.
  • Deslauriers D, Heironimus LB, Rapp T, Graeb BDS, Klumb RA, Chipps SR. 2018. Growth potential and habitat requirements of endangered age‐0 pallid sturgeon (Scaphirhynchus albus) in the Missouri River, USA, determined using a individual‐based model framework. Ecol Freshw Fish. 27(1):198–208.
  • Fagan WF, Siemann E, Mitter C, Denno RF, Huberty AF, Woods HA, Elser JJ. 2002. Nitrogen in insects: implications for trophic complexity and species diversification. Am Nat. 160(6):784–802.
  • Gemeinhardt TR, Gosch NJC, Civiello AP, Chrisman NJ, Shaughnessy HH, Brown TL, Long JM, Bonneau JL. 2019. The influence of depth and velocity on age‐0 Scaphirhynchus sturgeon prey consumption: implications for aquatic habitat restoration. River Res Applic. 35(3):205–215.
  • González A, Long JM. 2019. Assessment of prey consumption and body condition of Missouri River age-0 Scaphirhynchus sturgeon. Quarterly Report 12 to U.S. Army Corps of Engineers. Cooperative Agreement W912HZ-16-0026, Kansas City, Missouri.
  • Gosch NJ, Gemeinhardt TR, Civiello AP, Harrison AB, Bonneau JL. 2019. Dietary assessment of age-0 pallid sturgeon and shovelnose sturgeon: implications for surrogacy. Endang Species Res. 40:321–327.
  • Gosch NJC, Civiello AP, Gemeinhardt TR, Bonneau JL, Long JM. 2018. Are shovelnose sturgeon a valid diet surrogate for endangered pallid sturgeon during the first year of life? J Appl Ichthyol. 34(1):39–41.
  • Gosch NJC, Miller ML, Dziawloski AR, Morris DM, Gemeinhardt TR, Bonneau JL. 2014. Assessment of Missouri River floodplain invertebrates during historic inundation: implications for river restoration. Knowl Manag Aquat Ec. 412(5):1–15.
  • Gosch NJC, Miller ML, Gemeinhardt TR, Starks TA, Civiello AP, Long JM, Bonneau JL. 2016. Age‐0 shovelnose sturgeon prey consumption in the lower Missouri River. River Res Applic. 32(8):1819–1823.
  • Hansen MJ, Boisclair D, Brandt SB, Hewett SW, Kitchell JF, Lucas MC, Ney JJ. 1993. Applications of bioenergetics models to fish ecology and management: where do we go from here? T Am Fish Soc. 122(5):1019–1030.
  • Hogberg NP, Pegg MA. 2016. Flathead Catfish Pylodictis olivaris diet composition during extreme flow events in a large river. J Freshwater Ecol. 31(3):431–441.
  • Jacobson RB. Annis ML, Colvin ME, James DA, Welker TL, Parsley MJ. 2016. Missouri River Scaphirhynchus albus (Pallid Sturgeon) effects analysis—integrative report 2016: U.S. Geological Survey Scientific Investigations Report 2016–5064.
  • Jenkins AR, Keeley ER. 2010. Bioenergetic assessment of habitat quality for stream-dwelling cutthroat trout (Oncorhynchus clarkii bouvieri) with implications for climate change and nutrient supplementation. Can J Fish Aquat Sci. 67(2):371–385.
  • JMP, version 12. 1989–2019. Cary (NC): SAS Institute Inc.
  • Jobling M. 1983. Towards an explanation of specific dynamic action (SDA). J Fish Biol. 23(5):549–555.
  • Jones DB. 1931. Factors for converting percentages of nitrogen in foods and feeds into percentages of proteins. Circular 183. U. S. Department of Agriculture (slightly revised 1941).
  • Klowden MJ. 2013. Physiological systems in insects. San Diego, CA: Academic Press.
  • Koemel NA, Barnes CL, Wilder SM. 2019. Metabolic and behavioral responses of predators to prey nutrient content. J Insect Physiol. 116:25–31.
  • Lease HM, Wolf BO. 2010. Exoskeletal chitin scales isometrically with body size in terrestrial insects. J Morphol. 271(6):759–768.
  • Lee S, Haller LY, Fangue NA, Fadel JG, Hung S. 2016. Effects of feeding rate on growth performance and nutrient partitioning of young‐of‐the‐year white sturgeon (Acipenser transmontanus). Aquacult Nutr. 22(2):400–409.
  • Litzow MA, Piatt JF, Prichard AK, Roby DD. 2002. Response of pigeon guillemots to variable abundance of high-lipid and low-lipid prey. Oecologia. 132(2):286–295.
  • McCue MD. 2006. Specific dynamic action: a century of investigation. Comp Biochem Physiol Part A Mol Integr Physiol. 144(4):381–394.
  • Merrit RW. Cummins KW, Berg MB 1996. An introduction to the aquatic insects of North America. Dubuque (IA): Kendall. Hunt.
  • Millikin MR. 1983. Interactive effects of dietary protein and lipid on growth and protein utilization of age‐0 striped bass. Trans Am Fish Soc. 112(2A):185–193.
  • Murphy BR, Willis DW, editors. 1996. Fisheries techniques. 2nd ed. Bethesda (MD): American Fisheries Society; p. 335–350.
  • Nislow KH, Folt CL, Parrish DL. 2000. Spatially explicit bioenergetic analysis of habitat quality for age-0 Atlantic salmon. Trans Am Fish Soc. 129(5):1067–1081.
  • Pangle KL, Sutton TM, Kinnunen RE, Hoff MH. 2004. Overwinter survival of juvenile lake herring in relation to body size, physiological condition, energy stores, and food ration. T Am Fish Soc. 133(5):1235–1246.
  • Porreca AP, Hintz W, Coulte DP, Garvey JE. 2017. Subtle physiological and morphological differences explain ecological success of sympatric congeners. Ecosphere. 8(10):e01988.
  • Post JR, Evans DO. 1989. Size-dependent overwinter mortality of young-of-the-year perch (Perca flavescens): laboratory, in situ enclosure, and field experiments. Can J Fish Aquat Sci. 46(11):1958–1968.
  • Poulton BC, Wildhaber ML, Charbonneau CS, Fairchild JF, Mueller BG, Schmitt CJ. 2003. A longitudinal assessment of the aquatic macroinvertebrate community in the channelized lower Missouri River. Environ Monit and Assess. 85(1):23–53.
  • Raubenheimer D. 1995. Problems with ratio analysis in nutritional studies. Func Ecol. 9(1):21–29.
  • Raubenheimer D, Mayntz D, Simpson SJ, Tøft S. 2007. Nutrient-specific compensation following diapause in a predator: implications for intraguild predation. Ecology. 88(10):2598–2608.
  • Raubenheimer D, Rothman JM. 2013. Nutritional ecology of entomophagy in humans and other primates. Annu Rev Entomol. 58:141–160.
  • Ruohonen K, Simpson SJ, Raubenheimer D. 2007. A new approach to diet optimization: a re-analysis using European whitefish (Coregonus lavaretus). Aquaculture. 267(1-4):147–156.
  • Secor SM. 2009. Specific dynamic action: a review of the postprandial metabolic response. J Comp Physiol B, Biochem Syst Environ Physiol. 179(1):1–56.
  • Sweeney BW. 1993. Effects of streamside vegetation on macroinvertebrate communities of White Clay Creek in eastern North America. Proc Acad Natl Sci Philadelphia. 144:291–340.
  • Urabe H, Nakajima M, Torao M, Aoyama T. 2010. Evaluation of habitat quality for stream salmonids based on a bioenergetics model. T Am Fish Soc. 139(6):1665–1676.
  • USACE [United States Army Corps of Engineers]. 2017. Biological assessment [BA] for the operation of the Missouri River Mainstem reservoir system, the operation and maintenance of the bank stabilization and navigation project, the operation of Kansas River reservoir system, and the implementation of the Missouri River recovery management plan; [accessed 2018 Jul]. https://usace.contentdm.oclc.org/digital/collection/p16021coll3/id/677.
  • USACE [United States Fish and Wildlife Service]. 2018. Biological opinion: operations of the Missouri River mainstem reservoir system, the operation and maintenance of the bank stabilization and navigation project, operation of the Kansas River reservoir system, and the implementation of the Missouri River Recovery Management Plan, Denver, CO; [accessed 2018 Jul]. https://usace.contentdm.oclc.org/utils/getfile/collection/p16021coll3/id/670.
  • Wallace JB, Webster JR. 1996. The role of macroinvertebrates in stream ecosystem function. Annu Rev Entomol. 41:115–139.
  • Wilder SM, Barnes CL, Hawlena D. 2019. Predicting predator nutrient intake from prey body contents. Front Ecol E. 7(42):1–7.
  • Wilder SM, Eubanks MD. 2010. Might nitrogen limitation promote omnivory among carnivorous arthropods? Comment. Ecology. 91(10):3114–3117.
  • Wilder SM, Norris M, Lee RW, Raubenheimer D, Simpson SJ. 2013. Arthropod food webs become increasingly lipid-limited at higher trophic levels. Ecol Lett. 16(7):895–902.
  • Yilmaz E, Şahin A, Duru M, Akyurt İ. 2005. The effect of varying dietary energy on growth and feeding behaviour of common carp, Cyprinus carpio, under experimental conditions. Appl Anim Behav Sci. 92(1–2):85–92.