201
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Long-term evolution and driving mechanisms of the Baiyangdian wetland based on land cover frequency characteristics

, &
Article: 2327279 | Received 25 Dec 2023, Accepted 02 Mar 2024, Published online: 13 Mar 2024

References

  • Bedford BL. 1996. The need to define hydrologic equivalence at the landscape scale for freshwater wetland mitigation. Ecol Appl. 6(1):1–14. doi: 10.2307/2269552.
  • Cui L, Gao C, Zhou D, Mu L. 2013. Quantitative analysis of the driving forces causing declines in marsh wetland landscapes in the Honghe region, northeast China, from 1975 to 2006. Environ Earth Sci. 71(3):1357–1367. doi: 10.1007/s12665-013-2542-5.
  • Deng F, Wang X, Cai X, Li E, Jiang L, Li H, Yan R. 2013. Analysis of the relationship between inundation frequency and wetland vegetation in Dongting Lake using remote sensing data. Ecohydrology. 7(2):717–726. doi: 10.1002/eco.1393.
  • Deng W, Pan XL, Luan ZQ. 2003. Advances in wetland hydrology. Adv Water Sci. 4:521–527.
  • Gao XQ. 2020. Dynamic evolution of multi-temporal land cover frequency in Baiyangdian Wetland. Capital Normal University; p. 18–22.
  • Ghayour L, Neshat A, Paryani S, Shahabi H, Shirzadi A, Chen W, Al-Ansari N, Geertsema M, Pourmehdi Amiri M, Gholamnia M, et al. 2021. Performance evaluation of sentinel-2 and landsat 8 OLI data for land cover/use classification using a comparison between machine learning algorithms. Remote Sensing. 13(7):1349. doi: 10.3390/rs13071349.
  • Gong Z, Li H, Zhao W, Gong H. 2013. Driving forces analysis of reservoir wetland evolution in Beijing during 1984–2010. J Geogr Sci. 23(4):753–768. doi: 10.1007/s11442-013-1042-6.
  • Gu J, Qin Y, Wang X, Ma JY, Guo ZH, Zou LJ, Shen XH. 2018. Changes in inundation frequency in Poyang Lake and the response of wetland vegetation. Acta Ecologica Sinica. 38:7718–7726.
  • Halls JN, Magolan JL. 2019. A methodology to assess land use development, flooding, and wetland change as indicators of coastal vulnerability. Remote Sens. 11(19):2260. doi: 10.3390/rs11192260.
  • Hou, Ge, Gao, Meng, Li, Yin, Liu, Feng, and Liang. 2020. Ecological risk assessment and impact factor analysis of alpine wetland ecosystem based on LUCC and boosted regression tree on the Zoige Plateau, China. Remote Sensing 12(3):368. doi: 10.3390/rs12030368.1.
  • Hu S, Liu C, Zheng H, Wang Z, Yu J. 2012. Assessing the impacts of climate variability and human activities on streamflow in the water source area of Baiyangdian Lake. J Geogr Sci. 22(5):895–905. doi: 10.1007/s11442-012-0971-9.
  • Li Z, Liu Y, Xie J, Wang G, Cheng X, Zhang J, Sang C, Liu Z. 2022. Impact of microecological agents on water environment restoration and microbial community structures of trench system in a Baiyangdian wetland ecosystem. J Appl Microbiol. 132(3):2450–2463. doi: 10.1111/jam.15238.
  • Liu C, Xie G, Huang H. 2006. Shrinking and drying up of Baiyangdian Lake wetland: a natural or human cause? Chin GeographSc. 16(4):314–319. doi: 10.1007/s11769-006-0314-9.
  • Liu Y, Zhang B, Wang L, Wang N. 2013. A self-trained semisupervised SVM approach to the remote sensing land cover classification. Computers & Geosciences. 59:98–107. doi: 10.1016/j.cageo.2013.03.024.
  • Lu X, Liu H, Yang Q. 2000. Wetlands in China: feature, value and protection. Chin GeographSc. 10(4):296–301. doi: 10.1007/s11769-000-0043-4.
  • Lv JX, Jiang WG, Wang WJ, Chen K, Deng Y, Li Z. 2018. Wetland landscape pattern change and its driving forces in Beijing-Tianjin-Heibei region in recent 30years. Acta Ecol Sin. 38(12):4492–4503.
  • Peng JW, Liu SG, Lu WZ, Liu MC, Feng SL, Cong P. 2021. Continuous change mapping to understand wetland quantity and quality evolution and driving forces: a case study in the Liao River Estuary from 1986 to 2018. Remote Sens. 13(23):4900. doi: 10.3390/rs13234900.
  • Poulter A. 2012. The ‘Europeanisation’ of cataloguing codes: an analysis of the evolution of RDA. Emerald; p. 67–84. doi: 10.1108/S1876-0562(2012)0000006007.
  • Salem M, Bose A, Bashir B, Basak D, Roy S, Chowdhury IR, Alsalman A, Tsurusaki N. 2021. Urban expansion simulation based on various driving factors using a logistic regression model: Delhi as a case study. Sustainability. 13(19):10805. doi: 10.3390/su131910805.
  • Sica YV, Quintana RD, Radeloff VC, Gavier-Pizarro GI. 2016. Wetland loss due to land use change in the Lower Paraná River Delta, Argentina. Sci Total Environ. 568(15):967–978. doi: 10.1016/j.scitotenv.2016.04.200.
  • Song C, Ke L, Pan H, Zhan S, Liu K, Ma R. 2018. Long-term surface water changes and driving cause in Xiong’an, China: from dense Landsat time series images and synthetic analysis. Sci Bull (Beijing). 63(11):708–716. doi: 10.1016/j.scib.2018.05.002.
  • Sun Z. 2011. Estimating urban impervious surfaces from Landsat-5 TM imagery using multilayer perceptron neural network and support vector machine. J Appl Remote Sens. 5(1):053501. doi: 10.1117/1.3539767.
  • Wang C, Wang G, Dai L, Liu H, Li Y, Qiu C, Zhou Y, Chen H, Dong B, Zhao Y, et al. 2021. Study on the effect of habitat function change on waterbird diversity and guilds in Yancheng coastal wetlands based on structure–function coupling. Ecol Indic. 122:107223. doi: 10.1016/j.ecolind.2020.107223.
  • Wu F, Mo C, Dai X. 2022. Analysis of the driving force of land use change based on geographic detection and simulation of future land use scenarios. Sustainability. 14(9):5254. doi: 10.3390/su14095254.
  • Yang X, Jin X, Yang Y, Song J, Zhang T, Zhou Y. 2022. Spatially explicit changes of forestland in Taiwan Province from 1910 to 2010. J Geogr Sci. 32(3):441–457. doi: 10.1007/s11442-022-1956-y.
  • Yuan J, Cohen MJ, Kaplan DA, Acharya S, Larsen LG, Nungesser MK. 2015. Linking metrics of landscape pattern to hydrological process in a lotic wetland. Landscape Ecol. 30(10):1893–1912. doi: 10.1007/s10980-015-0219-z.
  • Zhang M, Gong ZN, Zhao WJ. 2016. Analysis of driving forces of Baiyangdian wetland evolution during 1984-2013. Chinese J Ecol. 35(2):499–507.
  • Zhang X, Wang G, Xue B, Zhang M, Tan Z. 2021. Dynamic landscapes and the driving forces in the Yellow River Delta wetland region in the past four decades. Sci Total Environ. 787:147644. doi: 10.1016/j.scitotenv.2021.147644.
  • Zhang XG, Yin XR, Feng XQ. 2008. Review of the issues related to wetland hydrology research. Wetland Sci. 6:106–115.
  • Zhao CP, Gong JG, Zeng QH, Yang M, Wang Y. 2021a. Landscape pattern evolution processes and the driving forces in the wetlands of Lake Baiyangdian. Sustainability. 13(17):9747. doi: 10.3390/su13179747.
  • Zhao D, Guo C, Wu D, Guo X. 2023. Different driving mechanisms of spatial heterogeneity at the community and landscape levels in the wetland ecosystem dominated by hydro-ecological processes. Hydrol Processes. 37(6). First published: 01 June 2023 doi: 10.1002/hyp.14916.
  • Zhao Y, Wang S, Zhang F, Shen Q, Li J, Yang F. 2021b. Remote sensing-based analysis of spatial and temporal water colour variations in Baiyangdian Lake after the establishment of the Xiong’an new area. Remote Sens. 13(9):1729. doi: 10.3390/rs13091729.
  • Zhao YK, Zhang YK, Ma DM, Zhang YT. 1995. Baiyangdian functional zone division principle. Environ Sci:S1,40–41 + 46.
  • Zhou D, Gong H, Wang Y, Khan S, Zhao K. 2008. Driving forces for the marsh wetland degradation in the Honghe national nature reserve in Sanjiang Plain, Northeast China. Environ Model Assess. 14(1):101–111. doi: 10.1007/s10666-007-9135-1.