0
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Leveraging environmental DNA (eDNA) to optimize targeted removal of invasive fishes

, , , , &
Article: 2378841 | Received 01 May 2024, Accepted 05 Jul 2024, Published online: 19 Jul 2024

References

  • Belcik JT. 2017. Population genetics and distribution of the oriental weatherfish, Misgurnus anguillicaudatus, in Chicago Area Waterways [master’s thesis]. Chicago, Illinois: Loyola University Chicago.
  • Belle CC, Stoeckle BC, Geist J. 2019. Taxonomic and geographical representation of freshwater environmental DNA research in aquatic conservation. Aquatic Conserv. 29(11):1996–2009. doi: 10.1002/aqc.3208.
  • Bowen L, Waters S, Rankin L, Thorne K, Gille D, De La Cruz S, Woo I, Lewis L, Karpenko K, Dean C, et al. 2024. A comparison of eDNA sampling methods in an estuarine environment on presence of longfin smelt (Spirinchus thaleichthys) and fish community composition. Environ DNA. 6(3):e560. doi: 10.1002/edn3.560.
  • Britton JR, Pegg J, Gozlan RE. 2011. Quantifying imperfect detection in an invasive pest fish and the implications for conservation management. Biol Conserv. 144(9):2177–2181. doi: 10.1016/j.biocon.2011.05.008.
  • Brooks ME, Kristensen K, Benthem KJv, Magnusson A, Berg CW, Nielsen A, Skaug HJ, Mächler M, Bolker BM. 2017. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9(2):378–400. doi: 10.3929/ethz-b-000240890.
  • Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, et al. 2009. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem. 55(4):611–622. doi: 10.1373/clinchem.2008.112797.
  • Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL. 2009. BLAST+: architecture and applications. BMC Bioinf. 10(1):421. doi: 10.1186/1471-2105-10-421.
  • Cantera I, Cilleros K, Valentini A, Cerdan A, Dejean T, Iribar A, Taberlet P, Vigouroux R, Brosse S. 2019. Optimizing environmental DNA sampling effort for fish inventories in tropical streams and rivers. Sci Rep. 9(1):3085. doi: 10.1038/s41598-019-39399-5.
  • Canty A, Ripley B. 2022. boot: bootstrap R (S-Plus) functions. R Package Version 1.3-28.1.
  • Carim KJ, Bean NJ, Connor JM, Baker WP, Jaeger M, Ruggles MP, McKelvey KS, Franklin TW, Young MK, Schwartz MK. 2020. Environmental DNA sampling informs fish eradication efforts: case studies and lessons learned. N American J Fish Manag. 40(2):488–508. doi: 10.1002/nafm.10428.
  • Chipuriro J, Faiq M, Li Z, Chen G. 2022. Persistence and degradation dynamics of eDNA affected by environmental factors in aquatic ecosystems. Hydrobiologia. 849(19):4119–4133. doi: 10.1007/s10750-022-04959-w.
  • Chou HY, Lo CF, Tung MC, Wang CH, Fukuda H, Sano T. 1993. The general characteristics of a birnavirus isolated from cultured loach (Misgurnus anguillicaudatus) in Taiwan. Fish Pathol. 28(1):1–7. doi: 10.3147/jsfp.28.1.
  • Chu Z, Lu G, Hu T, Wang H, Dai L, Huang W. 2012. Comparative analysis on fecundity of Misgurnus anguillicaudatus and Paramisgurnus dabryanus. Hubei Agri Sci. 13:2794–2796.
  • Coster SS, Dillon MN, Moore W, Merovich GT.Jr 2021. The update and optimization of an eDNA assay to detect the invasive rusty crayfish (Faxonius rusticus). PLoS One. 16(10):e0259084. doi: 10.1371/journal.pone.0259084.
  • Curtis AN, Tiemann JS, Douglass SA, Davis MA, Larson ER. 2021. High stream flows dilute environmental DNA (eDNA) concentrations and reduce detectability. Divers Distrib. 27(10):1918–1931. doi: 10.1111/ddi.13196.
  • Davison PI, Copp GH, Créach V, Vilizzi L, Britton JR. 2017. Application of environmental DNA analysis to inform invasive fish eradication operations. Naturwissenschaften. 104(3–4):35. doi: 10.1007/s00114-017-1453-9.
  • Davison AC, Hinkley DV. 1997. Bootstrap methods and their applications. Cambridge (US): Cambridge University Press.
  • Dejean T, Valentini A, Miquel C, Taberlet P, Bellemain E, Miaud C. 2012. Improved detection of an alien invasive species through environmental DNA barcoding: the example of the American bullfrog Lithobates catesbeianus. J Appl Ecol. 49(4):953–959. doi: 10.1111/j.1365-2664.2012.02171.x.
  • Denys GPJ, Manné S. 2024. First record of an established population of Misgurnus anguillicaudatus (Cantor, 1842) (Teleostei, Cobitidae) in France. BioInvasions Records. 13(2):529–540. doi: 10.3391/bir.2024.13.2.17.
  • DeWitt P. 2021. qwraps2: quick Wraps 2. R package version 0.5.2. https://CRAN.R-project.org/package=qwraps2.
  • Dubreuil T, Baudry T, Mauvisseau Q, Arqué A, Courty C, Delaunay C, Sweet M, Grandjean F. 2022. The development of early monitoring tools to detect aquatic invasive species: eDNA assay development and the case of the armored catfish Hypostomus robinii. Environ DNA. 4(2):349–362. doi: 10.1002/edn3.260.
  • Dudgeon D, Arthington AH, Gessner MO, Kawabata ZI, Knowler DJ, Lévêque C, Naiman RJ, Prieur-Richard AH, Soto D, Stiassny MLJ, et al. 2006. Freshwater biodiversity: importance, threats, status and conservation challenges. Biol Rev Camb Philos Soc. 81(2):163–182. doi: 10.1017/S1464793105006950.
  • Dumitraşcu OC, Mitrea I. 2012. Data upon the ichthyofauna of three reservoirs from Jiu River, Romania. South Western J Horticul Biol Environ. 3(1):1–8.
  • Epanchin-Niell RS. 2017. Economics of invasive species policy and management. Biol Invasions. 19(11):3333–3354. doi: 10.1007/s10530-017-1406-4.
  • Epanchin-Niell LR, Liebhold AM. 2015. Benefits of invasion prevention: effect of time lags, spread rates, and damage persistence. Ecol Econ. 116:146–153. doi: 10.1016/j.ecolecon.2015.04.014.
  • Eppinga MB, Baudena M, Haber EA, Rietkerk M, Wassen MJ, Santos MJ. 2021. Spatially explicit removal strategies increase the efficiency of invasive plant species control. Ecol Appl. 31(3):e02257. doi: 10.1002/eap.2257.
  • Espe MB, Johnston M, Blankenship SM, Dean CA, Bowen MD, Schultz A, Schumer G. 2022. The artemis package for environmental DNA analysis in R. Environ DNA. 4(3):523–532. doi: 10.1002/edn3.277.
  • Everts T, Halfmaerten D, Neyrinck S, De Regge N, Jacquemyn H, Brys R. 2021. Accurate detection and quantification of seasonal abundance of American bullfrog (Lithobates catesbeianus) using ddPCR eDNA assays. Sci Rep. 11(1):11282. doi: 10.1038/s41598-021-90771-w.
  • Executive Office of the President. 2016. Executive Order 13751, 81 FR 88609–88614.
  • Feist SM, Lance RF. 2021. Advanced molecular-based surveillance of quagga and zebra mussels: a review of environmental DNA/RNA (eDNA/eRNA) studies and considerations for future directions. NB. 66:117–159. doi: 10.3897/neobiota.66.60751.
  • Gu W, Swihart RK. 2004. Absent or undetected? Effects of non-detection of species occurrence on wildlife–habitat models. Biol Conserv. 116(2):195–203. doi: 10.1016/S0006-3207(03)00190-3.
  • Harrison JB, Sunday JM, Rogers SM. 2019. Predicting the fate of eDNA in the environment and implications for studying biodiversity. Proc R Soc B. 286(1915):20191409. doi: 10.1098/rspb.2019.1409.
  • Hart CL. 2024. Email to A. C. Goodman regarding observations of loach consuming juvenile salmonids in captivity at the US Bureau of Reclamation’s Tracy Fish Collection Facility (Tracy, CA, USA).
  • Hartig F. 2022. DHARMa: residual diagnostics for hierarchical (multi-level/mixed) regression models. R package version 0.4.6. https://CRAN.R-project.org/package=DHARMa.
  • Hinlo R, Furlan E, Suitor L, Gleeson D. 2017. Environmental DNA monitoring and management of ­invasive fish: comparison of eDNA and fyke netting. MBI. 8(1):89–100. doi: 10.3391/mbi.2017.8.1.09.
  • Hinlo R, Lintermans M, Gleeson D, Broadhurst B, Furlan E. 2018. Performance of eDNA assays to detect and quantify an elusive benthic fish in upland streams. Biol Invasions. 20(11):3079–3093. doi: 10.1007/s10530-018-1760-x.
  • Hinlo MRP. 2018. Improving eDNA detection probabilities for monitoring aquatic species [doctoral dissertation]. University of Canberra.
  • Hulme PE. 2006. Beyond control: wider implications for the management of biological invasions. J Appl Ecol. 43(5):835–847. doi: 10.1111/j.1365-2664.2006.01227.x.
  • Hunter ME, Meigs-Friend G, Ferrante JA, Smith BJ, Hart KM. 2019. Efficacy of eDNA as an early detection indicator for Burmese pythons in the ARM Loxahatchee National Wildlife Refuge in the greater Everglades ecosystem. Ecol Indic. 102:617–622. doi: 10.1016/j.ecolind.2019.02.058.
  • Ivanova NV, Zemlak TS, Hanner RH, Hebert PDN. 2007. Universal primer cocktails for fish DNA barcoding. Mol Ecol Notes. 7(4):544–548. doi: 10.1111/j.1471-8286.2007.01748.x.
  • Jane SF, Wilcox TM, McKelvey KS, Young MK, Schwartz MK, Lowe WH, Letcher BH, Whiteley AR. 2015. Distance, flow and PCR inhibition: E DNA dynamics in two headwater streams. Mol Ecol Resour. 15(1):216–227. doi: 10.1111/1755-0998.12285.
  • Jeffres CA, Opperman JJ, Moyle PB. 2008. Ephemeral floodplain habitats provide best growth conditions for juvenile Chinook salmon in a California river. Environ Biol Fish. 83(4):449–458. doi: 10.1007/s10641-008-9367-1.
  • Kanou K, Saito S, Fuchigami S, Imamura A, Imai H, Taki Y. 2007. Occurrence patterns and food habits of introduced alien loach Paramisgurnus dabryanus and native loach Misgurnus anguillicaudatus at irrigation drainages around rice fields in the Watarase River system, central Honshu, Japan. Aquacult Sci. 55(1):109–114.
  • Karlsson E, Ogonowski M, Sundblad G, Sundin J, Svensson O, Nousiainen I, Vasemägi A. 2022. Strong positive relationships between eDNA concentrations and biomass in juvenile and adult pike (Esox lucius) under controlled conditions: implications for monitoring. Environ DNA. 4(4):881–893. doi: 10.1002/edn3.298.
  • Katz JV, Jeffres C, Conrad JL, Sommer TR, Martinez J, Brumbaugh S, Corline N, Moyle PB. 2017. Floodplain farm fields provide novel rearing habitat for Chinook salmon. PLoS One. 12(6):e0177409. doi: 10.1371/journal.pone.0177409.
  • Katz J, Moyle PB, Quiñones RM, Israel J, Purdy S. 2013. Impending extinction of salmon, steelhead, and trout (Salmonidae) in California. Environ Biol Fish. 96(10–11):1169–1186. doi: 10.1007/s10641-012-9974-8.
  • Kim EM, Dong CM, Lee MN, Noh JK, Noh ES, Nam BH, Kim YO, Jung HS. 2022. Development of multiplex species-specific PCR for the simultaneous identification of three closely related species in the genera Misgurnus and Paramisgurnus. Aquacult Rep. 24:101144. doi: 10.1016/j.aqrep.2022.101144.
  • Kirsch JE, Feeney RF, Goodbla A, Hart C, Jackson ZJ, Schreier A, Smith R. 2018. The first record of the large-scale loach Paramisgurnus dabryanus (Cobitidae) in the United States. J Fish Wildlife Manage. 9(1):246–254. doi: 10.3996/012017-JFWM-008.
  • Klymus KE, Merkes CM, Allison MJ, Goldberg CS, Helbing CC, Hunter ME, Jackson CA, Lance RF, Mangan AM, Monroe EM, et al. 2020. Reporting the limits of detection and quantification for environmental DNA assays. Environ DNA. 2(3):271–282. doi: 10.1002/edn3.29.
  • Klymus KE, Richter CA, Chapman DC, Paukert C. 2015. Quantification of eDNA shedding rates from invasive bighead carp Hypophthalmichthys nobilis and silver carp Hypophthalmichthys molitrix. Biol Conserv. 183:77–84. doi: 10.1016/j.biocon.2014.11.020.
  • Kocher TD, Thomas WK, Meyer A, Edwards SV, Pääbo S, Villablanca FX, Wilson AC. 1989. Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proc Natl Acad Sci USA. 86(16):6196–6200. doi: 10.1073/pnas.86.16.6196.
  • LeBlanc F, Belliveau V, Watson E, Coomber C, Simard N, DiBacco C, Bernier R, Gagné N. 2020. Environmental DNA (eDNA) detection of marine aquatic invasive species (AIS) in Eastern Canada using a targeted species-specific qPCR approach. MBI. 11(2):201–217. doi: 10.3391/mbi.2020.11.2.03.
  • Lodge DM, Simonin PW, Burgiel SW, Keller RP, Bossenbroek JM, Jerde CL, Kramer AM, Rutherford ES, Barnes MA, Wittmann ME, et al. 2016. Risk analysis and bioeconomics of invasive species to inform policy and management. Annu Rev Environ Resour. 41(1):453–488. doi: 10.1146/annurev-environ-110615-085532.
  • Lodge DM, Williams S, MacIsaac HJ, Hayes KR, Leung B, Reichard S, Mack RN, Moyle P, Smith M, Andow DA, et al. 2006. Biological invasions: recommendations for US policy and management. Ecol Appl. 16(6):2035–2054. doi: 10.1890/1051-0761(2006)016[2035:BIRFUP]2.0.CO;2.
  • Logan DJ, Bibles EL, Markle DF. 1996. Recent collections of the exotic aquarium fishes in the freshwaters of Oregon and the thermal tolerance of oriental weatherfish and pirapatinga. California Fish Game. 82(2):66–80.
  • Mack RN, Simberloff D, Mark Lonsdale W, Evans H, Clout M, Bazzaz FA. 2000. Biotic invasions: causes, epidemiology, global consequences, and control. Ecol Appl. 10(3):689–710. doi: 10.1890/1051-0761(2000)010[0689:BICEGC]2.0.CO;2.
  • Martinez B, Reaser JK, Dehgan A, Zamft B, Baisch D, McCormick C, Giordano AJ, Aicher R, Selbe S. 2020. Technology innovation: advancing capacities for the early detection of and rapid response to invasive species. Biol Invasions. 22(1):75–100. doi: 10.1007/s10530-019-02146-y.
  • Mehta SV, Haight RG, Homans FR, Polasky S, Venette RC. 2007. Optimal detection and control strategies for invasive species management. Ecol Econ. 61(2–3):237–245. doi: 10.1016/j.ecolecon.2006.10.024.
  • Meyer L, Hinrichs D. 2000. Microhabitat preferences and movements of the weatherfish, Misgurnus fossilis, in a drainage channel. Environ Biol Fishes. 58(3):297–306. doi: 10.1023/A:1007681313916.
  • Meyerson LA, Mooney HA. 2007. Invasive alien species in an era of globalization. Front Ecol Environ. 5(4):199–208. doi: 10.1890/1540-9295(2007)5[199:IASIAE]2.0.CO;2.
  • Miralles L, Dopico E, Devlo-Delva F, Garcia-Vazquez E. 2016. Controlling populations of invasive pygmy mussel (Xenostrobus securis) through citizen science and environmental DNA. Mar Pollut Bull. 110(1):127–132. doi: 10.1016/j.marpolbul.2016.06.072.
  • Miya M, Minamoto T, Yamanaka H, Oka S-I, Sato K, Yamamoto S, Sado T, Doi H. 2016. Use of a filter cartridge for filtration of water samples and extraction of environmental DNA. J Vis Exp. 117(117):1–8. doi: 10.3791/54741.
  • Miya M, Sato Y, Fukunaga T, Sado T, Poulsen JY, Sato K, Minamoto T, Yamamoto S, Yamanaka H, Araki H, et al. 2015. MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: detection of more than 230 subtropical marine species. R Soc Open Sci. 2(7):150088. doi: 10.1098/rsos.150088.
  • Mooney HA, Drake JA. 1987. The ecology of: biological invasions. Environment: science and Policy for Sustainable Development. 29(5):10–37. doi: 10.1080/00139157.1987.9928888.
  • National Invasive Species Council (NISC). 2016. 2016-2018 NISC Management Plan. Washington.
  • Nevers MB, Przybyla-Kelly K, Shively D, Morris CC, Dickey J, Byappanahalli MN. 2020. Influence of sediment and stream transport on detecting a source of environmental DNA. PLoS One. 15(12):e0244086. doi: 10.1371/journal.pone.0244086.
  • Nunn AD, Tewson LH, Bolland JD, Harvey JP, Cowx IG. 2014. Temporal and spatial variations in the abundance and population structure of the spined loach (Cobitis taenia), a scarce fish species: implications for condition assessment and conservation. Aquatic Conservation. 24(6):818–830. doi: 10.1002/aqc.2451.
  • Ogutu-Ohwayo R, Hecky RE. 1991. Fish introductions in Africa and some of their implications. Can J Fish Aquat Sci. 48(S1):8–12. doi: 10.1139/f91-299.
  • Oh MK, Park JY. 2011. Change of skin mucus cells related to aerial exposure of Misgurnus mizolepis (Cobitidae) dwelling in a rice field. Korean J Ichthyol. 23(1):70–74.
  • Park JY, Kim IS. 2001. Histology and mucin histochemistry of the gastrointestinal tract of the mud loach, in relation to respiration. J Fish Biol. 58(3):861–872. doi: 10.1111/j.1095-8649.2001.tb00536.x.
  • Parson W, Pegoraro K, Niederstätter H, Föger M, Steinlechner M. 2000. Species identification by means of the cytochrome b gene. Int J Legal Med. 114(1–2):23–28. doi: 10.1007/s004140000134.
  • Pebesma E. 2018. Simple features for R: standardized support for spatial vector data. R J. 10(1):439–446. doi: 10.32614/RJ-2018-009.
  • Peterson JT, Scheerer PD, Clements S. 2015. An evaluation of the efficiency of minnow traps for estimating the abundance of minnows in desert spring systems. N Am J Fish Manag. 35(3):491–502. doi: 10.1080/02755947.2015.1017125.
  • Pilliod DS, Goldberg CS, Arkle RS, Waits LP. 2014. Factors influencing detection of eDNA from a stream-dwelling amphibian. Mol Ecol Resour. 14(1):109–116. doi: 10.1111/1755-0998.12159.
  • Pimentel D. 2007. Environmental and economic costs of vertebrate species invasions into the United States. Manag Vertebrate Inv Species Proc Int Symp. 38:2–8.
  • Pimentel D, Zuniga R, Morrison D. 2005. Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecol Econ. 52(3):273–288. doi: 10.1016/j.ecolecon.2004.10.002.
  • Przybyla-Kelly KJ, Spoljaric AM, Nevers MB. 2023. Round goby detection in Lakes Huron and Michigan—an evaluation of eDNA and fish catches. Fishes. 8(1):41. doi: 10.3390/fishes8010041.
  • Pukk L, Kanefsky J, Heathman AL, Weise EM, Nathan LR, Herbst SJ, Sard NM, Scribner KT, Robinson JD. 2021. eDNA metabarcoding in lakes to quantify influences of landscape features and human activity on aquatic invasive species prevalence and fish community diversity. Divers Distrib. 27(10):2016–2031. doi: 10.1111/ddi.13370.
  • Pyrzanowski K, Zięba G, Dukowska M, Smith C, Przybylski M. 2019. The role of detritivory as a feeding tactic in a harsh environment–a case study of weatherfish (Misgurnus fossilis). Sci Rep. 9(1):8467. doi: 10.1038/s41598-019-44911-y.
  • Reaser JK, Waugh J. 2007. Denying entry: opportunities to build capacity to prevent the introduction of invasive species and improve biosecurity at US Ports. Gland, Switzerland: IUCN.
  • Robinson CV, Garcia de Leaniz C, Rolla M, Consuegra S. 2019. Monitoring the eradication of the highly invasive topmouth gudgeon (Pseudorasbora parva) using a novel eDNA assay. Environ DNA. 1(1):74–85. doi: 10.1002/edn3.12.
  • Ruppert KM, Kline RJ, Rahman MS. 2019. Past, present, and future perspectives of environmental DNA (eDNA) metabarcoding: a systematic review in methods, monitoring, and applications of global eDNA. Global Ecol Conserv. 17:e00547. doi: 10.1016/j.gecco.2019.e00547.
  • Rytwinski T, Taylor JJ, Donaldson LA, Britton JR, Browne DR, Gresswell RE, Lintermans M, Prior KA, Pellatt MG, Vis C, et al. 2019. The effectiveness of non-native fish removal techniques in freshwater ecosystems: a systematic review. Environ Rev. 27(1):71–94. doi: 10.1139/er-2018-0049.
  • Sard NM, Herbst SJ, Nathan L, Uhrig G, Kanefsky J, Robinson JD, Scribner KT. 2019. Comparison of fish detections, community diversity, and relative abundance using environmental DNA metabarcoding and traditional gears. Environ DNA. 1(4):368–384. doi: 10.1002/edn3.38.
  • Sassoubre LM, Yamahara KM, Gardner LD, Block BA, Boehm AB. 2016. Quantification of environmental DNA (eDNA) shedding and decay rates for three marine fish. Environ Sci Technol. 50(19):10456–10464. doi: 10.1021/acs.est.6b03114.
  • Schultz EE. 1960. Establishment and early dispersal of a loach, Misgurnus anguillicaudatus (Cantor), in Michigan. Trans Am Fish Soc. 89(4):376–377. doi: 10.1577/1548-8659(1960)89[376:EAEDOA]2.0.CO;2.
  • Schumer G, Crowley K, Maltz E, Johnston M, Anders P, Blankenship S. 2019. Utilizing environmental DNA for fish eradication effectiveness monitoring in streams. Biol Invasions. 21(11):3415–3426. doi: 10.1007/s10530-019-02056-z.
  • Seebens H, Blackburn TM, Dyer EE, Genovesi P, Hulme PE, Jeschke JM, Pagad S, Pyšek P, Winter M, Arianoutsou M, et al. 2017. No saturation in the accumulation of alien species worldwide. Nat Commun. 8(1):14435. doi: 10.1038/ncomms14435.
  • Sepulveda AJ, Al-Chokhachy R, Laramie MB, Crapster K, Knotek L, Miller B, Zale AV, Pilliod DS. 2021. It’s complicated…environmental DNA as a predictor of trout and char abundance in streams. Can J Fish Aquat Sci. 78(4):422–432. doi: 10.1139/cjfas-2020-0182.
  • Sepulveda AJ, Schabacker J, Smith S, Al-Chokhachy R, Luikart G, Amish SJ. 2019. Improved detection for rare, endangered and invasive trout using a new large-volume sampling method for eDNA capture. Environ DNA. 1(3):227–237. doi: 10.1002/edn3.23.
  • Seymour M, Durance I, Cosby BJ, Ransom-Jones E, Deiner K, Ormerod SJ, Colbourne JK, Wilgar G, Carvalho GR, de Bruyn M, et al. 2018. Acidity promotes degradation of multi-species environmental DNA in lotic mesocosms. Commun Biol. 1(1):4. doi: 10.1038/s42003-017-0005-3.
  • Shogren AJ, Tank JL, Andruszkiewicz E, Olds B, Mahon AR, Jerde CL, Bolster D. 2017. Controls on eDNA movement in streams: transport, retention, and resuspension. Sci Rep. 7(1):5065. doi: 10.1038/s41598-017-05223-1.
  • Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Söding J, et al. 2011. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol. 7(1):539. doi: 10.1038/msb.2011.75.
  • Sigsgaard EE, Carl H, Møller PR, Thomsen PF. 2015. Monitoring the near-extinct European weather loach in Denmark based on environmental DNA from water samples. Biol Conserv. 183:46–52. doi: 10.1016/j.biocon.2014.11.023.
  • Sommer TR, Conrad L, O’Leary G, Feyrer F, Harrell WC. 2002. Spawning and rearing of splittail in a model floodplain wetland. Trans Am Fish Soc. 131(5):966–974. doi: 10.1577/1548-8659(2002)131<0966:SAROSI>2.0.CO;2.
  • Strayer DL, Eviner VT, Jeschke JM, Pace ML. 2006. Understanding the long-term effects of species invasions. Trends Ecol Evol. 21(11):645–651. doi: 10.1016/j.tree.2006.07.007.
  • Top-Karakuş N, Karakuş U. 2022. Misgurnus anguillicaudatus (oriental weatherloach). CABI Compendium. 75:1–12. doi: 10.1079/cabicompendium.75075.
  • Urquhart AN. 2013. Life history and environmental tolerance of the invasive Oriental Weatherfish (Misgurnus anguillicaudatus) in southwestern Idaho, USA [master’s thesis]. Boise, Idaho: Boise State University.
  • Vitousek PM, d’Antonio CM, Loope LL, Westbrooks R. 1996. Biological invasions as global environmental change. Am Sci. 84(5):468–478.
  • Wagner MD, Schumann DA, Smith BJ. 2019. Gear effectiveness and size selectivity for five cryptic madtom species (Noturus spp.). J Appl Ichthyol. 35(3):673–682. doi: 10.1111/jai.13892.
  • Wang Y, Hu M, Wang W, Cao L. 2009. Effects on growth and survival of loach (Misgurnus anguillicaudatus) larvae when co-fed on live and microparticle diets. Aquacul Res. 40(4):385–394. doi: 10.1111/j.1365-2109.2008.02104.x.
  • Wang YJ, Li DX. 2005. Research on biological characters and exploitations of Paramisgurnus dabryanus Sauvage. Special Wild Eco Anim Plant Res. 1:60–62.
  • Wilcove DS, Rothstein D, Dubow J, Phillips A, Losos E. 1998. Quantifying threats to imperiled species in the United States. BioScience. 48(8):607–615. doi: 10.2307/1313420.
  • Wilcox TM, McKelvey KS, Young MK, Sepulveda AJ, Shepard BB, Jane SF, Whiteley AR, Lowe WH, Schwartz MK. 2016. Understanding environmental DNA detection probabilities: a case study using a stream-dwelling char Salvelinus fontinalis. Biol Conserv. 194:209–216. doi: 10.1016/j.biocon.2015.12.023.
  • Wilson EB. 1927. Probable inference, the law of succession, and statistical inference. J Am Stat Assoc. 22(158):209–212. doi: 10.1080/01621459.1927.10502953.
  • Wood ZT, Erdman BF, York G, Trial JG, Kinnison MT. 2020. Experimental assessment of optimal lotic eDNA sampling and assay multiplexing for a critically endangered fish. Environ DNA. 2(4):407–417. doi: 10.1002/edn3.64.
  • Wozney KM, Wilson CC. 2017. Quantitative PCR multiplexes for simultaneous multispecies detection of Asian carp eDNA. J Great Lakes Res. 43(4):771–776. doi: 10.1016/j.jglr.2017.05.001.
  • Zhang Y, Wang H, Qin F, Liu S, Wu T, Li M, Xu P, Zhang X, Wang X, Hu G, et al. 2012. Molecular characterization of estrogen receptor genes in loach Paramisgurnus dabryanus and their expression upon 17α-ethinylestradiol exposure in juveniles. Gen Comp Endocrinol. 178(2):194–205. doi: 10.1016/j.ygcen.2012.06.004.