82
Views
10
CrossRef citations to date
0
Altmetric
Research Article

Ocular and neuronal cell apoptosis during HSV-1 infection: A review

, &
Pages 79-90 | Published online: 02 Jul 2009

References

  • Roizman B, Sears A. Herpes simplex viruses and their replication. In: Fields BN, editor. Field's Virology.Philadelphia: Lippincott-Raven; 1996:2231.
  • Roizman B. Herpesviridae. In: Fields BN, editor. Field's Virology.Philadelphia: Lippincott-Raven; 1996:2221–2256.
  • Asano S, Honda T, Goshima F, Nishiyama Y, Sugiura Y. U53 protein kinase of herpes simplex virus protects primary afferent neurons from virus-induced apoptosis in ICR mice. Neurosci Lett.2000 ;294(2): 105–108.
  • Gautier I, Coppey J, Durieux C. Early apoptosis-related changes triggered by HSV-1 in individual neuronlike cells. Exp Cell Res.2003;289(1):174–183.
  • Nava V, Rosen A, Veliuona M. Sindbis virus induces apoptosis through a caspase-dependent, CrmA-sensitive pathway. J Virol.1998;72:452–459.
  • Tropea F, Troiano L, Monti D, Lovato E, Malorni W, Rainaldi G, Mattana P, Viscomi G, Ingletti MC, Portolani M, Cermelli C, Cossarizza A, Franceschi C. Sendai virus and herpes virus type 1 induce apoptosis in human periph-eral blood mononuclear cells. Exp Cell Res.1995;218: 63–70.
  • Labrada L, Bodelon G, Vinuela J, Benavente J. Avian reoviruses cause apoptosis in cultured cells: Viral uncoat-ing, but not viral gene expression, is required for apopto-sis induction. J Virol.2002;76(16):7932–7941.
  • Lewis J, Wesselingh S, Griffin D. Alphavirus-induced apoptosis in mouse brains correlates with neurovirulence. J Virol.1996;70:1828–1835.
  • Asano S, Honda T, Goshima F, Watanabe D, Miyake Y, Sugiura Y, Nishiyama Y. US3 protein kinase of herpes simplex virus type 2 plays a role in protecting corneal epithelial cells from apoptosis in infected mice. J Gen Virol.1999;80\(Pt 1):51–56.
  • Aubert M, Blaho JA. The herpes simplex virus type 1 reg-ulatory protein ICP27 is required for the prevention of apoptosis in infected human cells. J Virol.1999;73(4): 2803–2813.
  • Aubert M, O'Toole J, Blaho JA. Induction and prevention of apoptosis in human HEp-2 cells by herpes simplex virus type 1. J Virol.1999;73(12):10359–10370.
  • Aubert M, Blaho JA. Modulation of apoptosis during herpes simplex virus infection in human cells. Microbes Infect.2001 ;3( 10):859–866.
  • Aubert M, Rice SA, Blaho JA. Accumulation of herpes simplex virus type 1 early and leaky-late proteins corre-lates with apoptosis prevention in infected human HEp-2 cells. J Virol.2001 ;75(2): 1013–1030.
  • Chou J, Roizman B. Herpes simplex virus 1 gamma(1)34.5 gene function, which blocks the host response to infection, maps in the homologous domain of the genes expressed during growth arrest and DNA damage. Proc Natl Acad Sci USA.1994;91(12):5247–5251.
  • Chou J, Roizman B. The gammai34.5 gene of herpes simplex virus 1 precludes neuroblastoma cells from triggering total shutoff of protein synthesis characteristic of programmed cell death in neuronal cells. Proc Natl Acad Sci USA.1992;89: 3266–3270.
  • Galvan V, Roizman B. Herpes simplex virus 1 induces and blocks apoptosis at multiple steps during infection and protects cells from exogenous inducers in a cell-type-dependent manner. Proc Natl Acad Sci USA.1998; 95(7):3931–3936.
  • Galvan V, Brandimarti R, Roizman B. Herpes simplex virus 1 blocks caspase-3-independent and caspase-dependent pathways to cell death. J Virol.1999;73(4): 3219–3226.
  • Galvan V et al.Bc1-2 blocks a caspase -dependent pathway of apoptosis activated by herpes simplex vius 1 infected in HEp-2 cells. J Virol.2000;74(4):1931–1938.
  • Jerome K, Fox R, Chen Z, Sears AE, Lee H, Corey L. Herpes simplex virus inhibits apoptosis through the action of two genes, Us5 and Us3. J Virol.1999;73(11): 8950–8957.
  • Jerome KR, Fox R, Chen Z, Sarkar P, Corey L. Inhibition of apoptosis by primary isolates of herpes simplex virus. Arch Virol.2001;146(11):2219–2225.
  • Jin L, Peng W, Perng GC, Brick DJ, Nesburn AB, Jones C, Wechsler SL. Identification of herpes simplex virus type 1 latency-associated transcript sequences that both inhibit apoptosis and enhance the spontaneous reactivation phe-notype. J Virol.2003;77(11): 6556–6561.
  • Koyama AH,. Suppression of apoptotic DNA frag-mentation in herpes simplex virus type 1-infected cells. J Virol.1997;71(3):2567–2571.
  • Leopardi R, Roizman B. The herpes simplex virus major regulatory protein ICP4 block apoptosis induced by the virus. Proc Nall Acad Sci USA.1996;94:9583–9587.
  • Leopardi R, Van Sant C, Roizman B. The herpes simplex virus 1 protein kinase U53 is required for protection from apoptosis induced by the virus. Proc Nall Acad Sci USA.1997;93:7891–7896.
  • Miles D, Athmanathan S, Thakur A, Willcox M. A novel apoptotic interaction between HSV-1 and corneal epithe-lial cells. Curr Eye Res.2002;26(3-4):165–174.
  • Munger J, Roizman B. The U53 protein kinase of herpes simplex virus 1 mediates the posttranslational modifica-tion of BAD and prevents BAD-induced programmed cell death in the absence of other viral proteins. Proc Nall Acad Sci USA.2001;98(18):10410–10415.
  • Munger J, Chee AV, Roizman B. The U(S)3 protein kinase blocks apoptosis induced by the d120 mutant of herpes simplex virus 1 at a premitochondrial stage. J Virol.2001 ;75(12):5491–5497.
  • Peng W, Henderson G, Perng GC, Nesburn AB, Wechsler SL, Jones C. The gene that encodes the herpes simplex virus type 1 latency-associated transcript influences the accumulation of transcripts (bc1-xL and bel-xS) that encode apoptotic regulatory proteins. J Virol.2003;77(19): 10714–10718.
  • Perng G, Jones C, Ciacci-Zanella J, Stone M, Henderson G, Yukht A, Slanina SM, Hofman FM, Ghiasi H, Nesburn AB, Wechsler SL. Virus-induced neuronal apoptosis blocked by the herpes simplex virus latency-associated transcript Science.2000;287(5457):1500–1503.
  • Zhou G, Galvan V, Campadelli-Fiume G, Roizman B. Glycoprotein D or J delivered in trans blocks apoptosis in SK-N-SH cells induced by a herpes simplex virus 1 mutant lacking intact genes expressing both glycoproteins. J Virol.2000 ;74(24): 11782–11791.
  • Zhou G, Roizman B. Wild-type herpes simplex virus 1 blocks programmed cell death and release of cytochrome c but not the translocation of mitochondrial apoptosis-inducing factor to the nuclei of human embryonic lung fibroblasts. J Virol.2000 ;74( 19): 9048–9053.
  • Zhou G, Roizman B. The domains of glycoprotein D required to block apoptosis depend on whether glycopro-D is present in the virions carrying herpes simplex virus 1 genome lacking the gene encoding the glycopro-tein. J ViroL2001;75(13):6166–6172.
  • Zhou G, Roizman B. Truncated forms of glycoprotein D of herpes simplex virus 1 capable of blocking apoptosis and of low-efficiency entry into cells form a heterodimer dependent on the presence of a cysteine located in the shared transmembrane domains. J ViroL2002;76(22): 11469–11475.
  • Zhou G, Roizman B. Cation-independent mannose 6-phos-phate receptor blocks apoptosis induced by herpes simplex virus 1 mutants lacking glycoprotein D and is likely the target of antiapoptotic activity of the glycoprotein. J ViroL2002;76(12):6197–6204.
  • Zhou G, Avitabile E, Campadelli-Fiume G, Roizman B. The domains of glycoprotein D required to block apopto-sis induced by herpes simplex virus 1 are largely distinct from those involved in cell-cell fusion and binding to Nectin 1. J ViroL2003;77(6):3759–3767.
  • Zachos G, Koffa M, Preston CM, Clements JB, Conner J. Herpes simplex virus type 1 blocks the apoptotic host cell defense mechanisms that target Bc1-2 and manipulates activation of p38 mitogen-activated protein kinase to improve viral replication J ViroL2001;75(6):2710–2728.
  • Takeshita T. Bilateral herpes simplex virus keratitus in a patient with pemphigus vulgaris. Clin Exp DermatoL1996;21(4):291–292.
  • Hengartner M. The biochemistry of apoptosis. Nature.2000;407(6805):770–776.
  • Downward J. The ins and outs of signalling. Nature.2001;411:759–762.
  • Schwartzman R, Cidlowski J. Apoptosis: The biochemistry and molecular bology of programmed cell death. Endocr Rev.1993;14(2): 133–145.
  • Joza N, Susin SA, Daugas E, Stanford WL, Cho SK, Li CY, Sasaki T, Elia AJ, Cheng HY, Ravagnan L, Ferri KF, Zamzami N, Wakeham A, Hakem R, Yoshida H, Kong YY, Mak TW, Zuniga-Pflucker JC, Kroemer G, Penninger JM. Essential role of the mitochondrial apoptosis-inducing factor in programmed cell death. Nature.2001;410: 549–554.
  • Green D, Reed J. Mitocondria and apoptosis. Science.1998;281:1309–1311.
  • Reed J. Double identity for proteins of the Bc1-2 family. Nature.1997;387:773–776.
  • Kane DJ, Sarafian TA, Anton R, Hahn H, Gralla EB, Valentine JS, Ord T, Bredesen DE. Bc1-2 Inhibition of neural death: decreased generation of reactive oxygen species. Science.1993;262:1274–1276.
  • Liu X, Kim CN, Yang J, Jemmerson R, Wang X. Induction of apoptotic program in cell-free extracts: Requirements for dATP and cytochrome C. Cell.1996;86:147–157.
  • Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, Wang X. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initi-ates an apoptotic protease cascade. Cell.1997;91: 479–489.
  • Slee E, Harte MT, Kluck RM, Wolf BB, Casiano CA, Newmeyer DD, Wang HG, Reed JC, Nicholson DW, Alnemri ES, Green DR, Martin SJ. Ordering the cytochrome C-initiated caspase cascade: Hierarchical acti-vation of caspases-1, -3, -6, -7, -8, and -10 in a caspase-9-dependent manner. J Cell Biol.1999;144:281–291.
  • Hollon T. Ordering the events of apoptosis. The Scientist.2001; 15(7):20–21 .
  • Henkart P. ICE family proteases: mediators of all apoptotic cell death. Immunity.1996;4:195–200.
  • Casciola-Rosen L. Apopain/CPP32 cleaves proteins that are essential for cellular repair: A fundamental principle of apoptotic death. J Exp Med.1996183:1957-1963.
  • Enari M, Sakahira H, Yokoyama H. A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature.1998;391:43–50.
  • Liu X, Zou H, Slaughter C. DFF, a heterodimeric protein that functions downstream of caspase-3 to trigger DNA fragmentation during apoptosis. Cell.1997;89: 175–184.
  • Green D, Beere H. Mostly dead. Nature.2001;412: 133–135.
  • Bursch W, Paffe S, Putz B, Barthel G, Schulte-Hermann R. Determination of the length of the histological stages of apoptosis in normal liver and in altered hepatic foci of rats. Carcinogenesis.1990;11:847–853.
  • Wyllie AH, Kerr JFR, Currie AR. Cell death: The signifi-cance of apoptosis. Int Rev CytoL1980;68:251–300.
  • Rotello R, Hocker M, Gerschenson L. Biochemical evi-dence for programmed cell death in rabbit uterine epithe-1Mm. Am J PathoL1989;134: 491–495.
  • Kyprianou N, Isaacs J. Activation of programmed cell death in the rat ventral prostate after castration. Endocrinology.1988;122 :552–562.
  • Koury M, Bondurant M. Erythropoietin retards DNA breakdown and prevents programmed death in erythroid progenitor cells. Science.1990;248:378–381.
  • Clement MV, Stamenkovic I. Fas and tumor necrosis factor receptor-mediated cell death: Similarities and distinctions. J Exp Med.1994;180(2):557–567.
  • Ashkenazi A, Dixit VM. Death receptors: Signaling and modulation Science.1998;281:1305–1308.
  • Fady C, Gardner A, Jacoby F, Briskin K, Tu Y, Schmid I, Lichtenstein A. Atypical apoptotic cell death induced in L929 targets by exposure to tumor necrosis factor. J Inter-feron Cytokine Res.1995;15(1):71–80.
  • Nagata S, Goldstein P. The Fas death factor. Science.1995;267:1449–1456.
  • Boldin MP, Goncharov TM, Goltsev YV, Wallach D. Involvement of MACH, a novel MORT1/FADD-interacting protease, in Fas/APO-1- and TNF receptor-induced cell death. Cell.1996;85:803–815.
  • Muzio M. FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1) death-inducing signaling complex. Cell.1996;85(6):817–827.
  • Srinivasula S, Ahmad M, Fernandes-Alnemri T. Molecular ordering of the Fas-apoptotic pathway: The Fas/APO-1Mch5 is a CrmA-inhibitable protease activates multiple Ced-3/ICE-like cysteine proteases. Proc Natl Acad Sci USA.1996;93: 14486–14491.
  • Clem R, Miller L. Apoptosis reduces both the in vivo repli-cation and the in vitroinfectivity of a baculovirus. J Virol.1993;67:3730–3738.
  • Salvesen G, Dixit V. Caspases: Intracellular signaling by proteolysis. Cell.1997;91:443–446.
  • Ray C, Black R, Kronheim S. Viral inhibition of inflam-mation: Cowpox virus encodes an inhibitor of the inter-leukin-l-beta converting enzyme. Cell.1992;69:597–604.
  • Boulakia C, Chen G, Ng E Bc1-2 and adenovirus E 1B 19kDa protein prevent E1A-induced processing of CPP32 and cleavage of poly(ADP-ribose) polymerase. Oncogene.1996;12:529–535.
  • Hu S, Vincenz C, Buller M. A novel family of viral death effector domain-containing molecules that inhibit both CD95- and tumor necrosis factor receptor-l-induced apop-tosis. J Biol Chem.1997;272: 9621–9624.
  • Bertin J, Mendrysa S, LaCount D. Apoptotic suppression of baculovirus P35 involves cleavage by and inhibition of a virus-induced CED-3/ICE-like protease. J Virol.1996;70: 6251–6259.
  • Tan X, Martin SJ, Green DR, Wang JY. Degradation of retinoblastoma protein in tumor necrosis factor- and CD95-induced cell death. J Biol Chem.1997;272: 9613–9616.
  • Kothakota S, Azuma T, Reinhard C, Klippel A, Tang J, Chu K, McGarry TJ, Kirschner MW, Koths K, Kwiatkowski DJ, Williams LT. Caspase-3-generated fragment of gelsolin: effector of morphological change in apotosis. Science.1997;1997:294–298.
  • Ito M, Watanabe M, Kamiya H, Sakurai M. Herpes simplex virus type 1 induces apoptosis in peripheral blood T lymphocytes. J Infect Dis.1997;175:1220–1224.
  • Ito M, Koide W, Watanabe M, Kamiya H, Sakurai M. Apoptosis of cord blood T lymphocytes by herpes simplex virus type 1. J Gen Virol.1997;78: 1971–1975.
  • Aita K, Irie H, Koyama AH, Fukuda A, Yoshida T, Shiga J. Acute adrenal infection by HSV-1: Role of apoptosis in viral replication. Arch Virol.2001;146(10):2009–2020.
  • Irie H, Koyama H, Kubo H, Fukuda A, Aita K, Koike T, Yoshimura A, Yoshida T, Shiga J, Hill T. Herpes simplex virus hepatitis in macrophage-depleted mice: The role of massive, apoptotic cell death in pathogenesis. J Gen Virol.1998;79:1225–1231.
  • Nakamichi K, Matsumoto Y, Otsuka H. Bovine her-pesvirus 1 ORF8 induces apoptosis in infected cells and facilitates virus egress. Virology.2002;304: 24–32.
  • Cheng E, Nicholas J, Bellows D. A Bc1-2 homolog encoded by Kaposi's sarcoma-associated virus, human her-pesvirus 8, inhibits apoptosis but does not heterdimerize with Bax or Bak. Proc Natl Acad Sci USA.1997;94: 690–694.
  • Dawson C, Eliopoulos A, Dawson J. BHRF1, a viral homo-logue of the Bc1-2 oncogene, disturbs epithelial cell dif-ferentiation. Oncogene.1995;9: 69–77.
  • Derfuss T, Fickenscher H, Kraft MS, Henning G, Lengenfelder D, Fleckenstein B, Meinl E. Antiapoptotic activity of the herpesvirus saimiri-encoded Bc1-2 homolog: Stabilization of mitochondria and inhibition of caspase-3 -like activity. J Virol.1998;72(7):5897–5904.
  • Hardwick J. Virus-induced apoptosis. Adv Pharmacol.1997;41:295.
  • Thome M, Schneider P, Hofmann K. Viral FLICE-inhibitory proteins (FLIPs) prevent apoptosis induced by death receptors. Nature.1997;386:517–521.
  • Wang S, Rowe M, Lundgren E. Expression of the Epstein-Barr virus transforming protein LMP1 causes a rapid and transient stimulation of the Bc1-2 homologue Mc1-1 levels in B-cell lines. Cancer Res.1996;56: 4610–4613.
  • Damania B, Desrosiers R. Simian homologues of human herpesvirus 8. Philos Trans R Soc Lond B Biol Sci.2001 ;356(1408):535–543.
  • Muralidhar S, Veytsmarm G, Chandran B, Ablashi D, Doniger J, Rosenthal U. Characterization of the human herpesvirus 8 (Kaposi's sarcoma-associated herpesvirus) oncogene, kaposin (ORF K12). J Clin Virol.2000; 16(3):203–213.
  • Seo T, Lee D, Shim YS, Angell JE, Chidambaram NV, Kalvakolanu DV, Choe J. Viral interferon regulatory factor 1 of Kaposi's sarcoma-associated herpesvirus interacts with a cell death regulator, GRIM19, and inhibits interferon/retinoic acid-induced cell death. J Virol.2002; 76(17):8797–8807.
  • Jerome KR, Tait JF, Koelle DM, Corey L. Herpes simplex virus type 1 renders infected cells resistant to cytotoxic T-lymphocyte-induced apoptosis. J Virol.1998;72(1): 436–441.
  • Sieg S, Yildirim Z, Smith D, Kayagaki N, Yagita H, Huang Y, Kaplan D. Herpes simplex virus type 2 inhibition of Fas ligand expression. J Virol.1996;70(12):8747–8751.
  • Whitbeck J, Peng C, Lou H, Xu R, Willis SH, Ponce de Leon M, Peng T, Nicola AV, Montgomery RI, Warner MS, Soulika AM, Spruce LA, Moore WT, Lambris JD, Spear PG, Cohen GH, Eisenberg RJ. Glycoprotein D of herpes simplex virus (HSV) binds directly to HVEM, a member of the tumor necrosis factor receptor superfamily and a mediator of HSV entry. J Virol.1997;71(8):6083–6093.
  • Nicola AV, Ponce de Leon M, Xu R, Hou W, Whitbeck JC, Krummenache C, Montgomery RI, Spear PG, Eisenberg RJ, Cohen GH. Monoclonal antibodies to distinct sites on herpes simplex virus (HSV) glycoprotein D block HSV binding to HVEM. J Virol.1998;72(5):3595–3601.
  • Benetti L, Munger J, Roizman B. The herpes simplex virus 1 U53 protein kinase blocks caspase-dependent double cleavage and activation of the proapoptotic protein BAD. J Virol.2003;77(11):6567–6573.
  • Hagglund R, Munger J, Poon AP, Roizman B. U(S)3 protein kinase of herpes simplex virus 1 blocks caspase 3 activation induced by the products of U(S)1.5 and U(L)13 genes and modulates expression of transduced U(S)1.5 open reading frame in a cell type-specific manner. J Virol.2002;76(2):743–754.
  • Munger J, Hagglund R, Roizman B. Infected cell protein No. 22 is subject to proteolytic cleavage by caspases activated by a mutant that induces apoptosis. Virology.2003;305(2):364–370.
  • McMahan J, Simpson S, Clements JB. Herpes simplex virus induces a processing factor that stimulaes poly(A) site usage. Cell.1989;59:1093–1105.
  • Bryant HE, Matthews DA, Wadd S, Scott JE, Kean J, Graham S, Russell WC, Clements JB. Interaction between herpes simplex virus type 1 1E63 protein and cellular protein p32. J Virol.2000;74(23):11322–11328.
  • Koffa MD, Clements JB, Izaurralde E, Wadd S, Wilson SA, Mahal IW, Kuersten S. Herpes simplex virus ICP27 protein provides viral mRNAs with access to the cellular mRNA export pathway. EMBO J2001;20(20):5769–5778.
  • Wadd S, Bryant H, Filhol 0, Scott JE, Hsieh TY, Everett RD, Clements JB. The multifunctional herpes simplex virus 1E63 protein interacts with heterogeneous ribonucleoprotein K and with casein kinase 2. J Virol.1999 ;274(41):28991–28998.
  • He B, Gross M, Roizman B. The gamma134.5 protein of herpes simplex virus 1 has the structural and functional attributes of a protein phosphatase 1 regulatory subunit with the enzyme in infected cells. J Biol Chem.1998;273(33):20737–20743.
  • Koyama AH, Adachi A. Induction of apoptosis by herpes simplex virus type 1. J Gen Virol.1997;78:2909–2912.
  • Ozaki N, Sugiura Y, Yamamoto M, Yokoya S, Wanaka A, Nishiyama Y. Apoptosis induced in the spinal cord and dorsal root ganglion by infection of herpes simplex virus type 2 in the mouse. Neurosci Lett.1997;228(2):99–102.
  • Yamada M, Natsume A, Mata M, Oligino T, Goss J, Glorioso J, Fink DJ. Herpes simplex virus vector-mediated expression of Bc1-2 protects spinal motor neurons from degeneration following root avulsion. Exp Neurol.2001;168(2):225–230.
  • Langelier Y, Bergeron S, Chabaud S, Lippens J, Guilbault C, Sasseville AM, Denis S, Mosser DD, Massie B. The R1 subunit of herpes simplex virus ribonucleotide reductase protects cells against apoptosis at, or upstream of, caspase-8 activation. J Gen Virol.2002;83\(Pt 11):2779–2789.
  • Kalwy SA, Akbar MT, Coffin RS, de Belleroche J, Latchman DS. Heat shock protein 27 delivered via a herpes simplex virus vector can protect neurons of the hip-pocampus against kainic-acid-induced cell loss. Brain Res Mol Brain Res.2003;111(1–2):91-103.
  • Chabaud S, Lambert H, Sasseville AM, Lavoie H, Guilbault C, Massie B, Landry J, Langelier Y. The R1 subunit of herpes simplex virus ribonucleotide reductase has chaperone-like activity similar to Hsp27. FEBS Lett.2003;545(2-3):213–218.
  • Perkins D, Pereira EF, Gober M, Yarowsky PI Aurelian L. The herpes simplex virus type 2 R1 protein kinase (ICP10 PK) blocks apoptosis in hippocampal neurons, involving activation of the MEK/MAPK survival pathway. J Virol.2002;76(3): 1435–1449.
  • Perkins D, Pereira EF, Aurelian L. The herpes simplex virus type 2 R1 protein kinase (ICP10 PK) functions as a dominant regulator of apoptosis in hippocampal neurons involving activation of the ERK survival pathway and upregulation of the antiapoptotic protein Bag-1. J Virol.2003 ;77(2): 1292–1305.
  • Nichol PF, Chang JY, Johnson EM Jr, Olivo PD. Herpes simplex virus gene expression in neurons: Viral DNA syn-thesis is a critical regulatory event in the branch point between the lytic and latent pathways. J Virol.1996;70(8): 5476–5486.
  • Stevens JG, Wagner EK, Devi-Rao GB, Cook ML, Feldman LT. RNA complementary to a herpesvirus alpha gene mRNA is prominent in latently infected neurons. Science.1987;235:1056–1059.
  • Kang W, Mukerjee R, Fraser NW Establishment and maintenance of HSV latent infection is mediated through correct splicing of the LAT primary transcript Virology.2003;312(1):233–244.
  • Thompson R, Sawtell N. Herpes simplex virus type 1 latency-associated transcript gene promotes neuronal survival. J Virol.2001 ;75(14): 6660–6675.
  • Henderson G, Peng W, Jin L, Perng GC, Nesburn AB, Wechsler SL, Jones C. Regulation of caspase 8- and caspase 9-induced apoptosis by the herpes simplex virus type 1 latency-associated transcript. J Neurovirol.2002; 8(2): 103–111.
  • Wilson SE, Mohan RR, Ambrosio R Jr, Hong J, Lee J. The corneal wound healing response: Cytokine-mediated interaction of the epithelium, stroma, and inflam-matory cells. Prog Retin Eye Res.2001;20(5):625–637.
  • Wilson SE. Molecular cell biology for the refractive corneal surgeon: Programmed cell death and wound healing. J Refract Surg.1997 ;13(2): 171–175.
  • Wilson SE, Kim WI Keratocyte apoptosis: implications on corneal wound healing, tissue organization, and disease. Invest Ophthalmol Vis Sci.1998;39(2):220–226.
  • De Saint Jean M, Debbasch C, Rahmani M, Brignole F, Feldmann G, Warnet JM, Baudouin C. Fas- and interferon gamma-induced apoptosis in chang conjunctival cells: Further investigations. Invest Ophthalmol Vis Sci.2000;41(9):2531–2543.
  • Wilson SE, Pedroza L, Beuerman R, Hill JM. Herpes simplex virus type 1 infection of corneal epithelial cells induces apoptosis of the underlying keratocytes. Exp Eye Res.1997;64:775–779.
  • Wilson SE, Liu JJ, Mohan RR. Stromal-epithelial interac-tions in the cornea. Prog Retin Eye Res.1999;18(3): 293–309.
  • Wilson SE, Li Q, Weng J, Barry-Lane PA, Jester JV, Liang Q, Wordinger RI The Fas-Fas ligand system and other modulators of apoptosis in the cornea. Invest Ophthalmol Vis Sci.1996;37:1582–1592.
  • Zheng X, Silverman RH, Zhou A, Goto T, Kwon BS, Kaufman HE, Hill TM. Increased severity of HSV-1 ker-and mortality in mice lacking the 2-5A-dependent RNase L gene. Invest Ophthalmol Vis Sci.2001;42(1): 120–126.
  • Garrity MiM, Burgart U, Riehle DL, Hill EM, Sebo TJ, Wilzig T. Identifying and quantifying apoptosis: Navigat-ing technical pitfalls. Mod Pathol.2003;16(4): 389–394.
  • Nishiyama Y, Murata T. Anti-apoptotic protein kinase of herpes simplex virus. Trends Micro biol.2002;10(3): 105–107.
  • De Martino L, Marfe G, Di Stefano C, Pagnini U, Florio S, Crispin° L, Iovane G, Macaluso M, Giordano A. Inter-ference of bovine herpesvirus 1 (BHV-1) in sorbitol-induced apoptosis. J Cell Biochem.2003;89(2):373–380.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.