308
Views
21
CrossRef citations to date
0
Altmetric
Research Article

Tear Dynamics Model

&
Pages 177-197 | Received 19 May 2006, Accepted 19 Dec 2006, Published online: 02 Jul 2009

REFERENCES

  • Craig J. Structure and function of the preocular tear film. The Tear Film: Structure, Function and Clinical Examination, D Korb, J Craig, M Doughty, J P Guillon, A Tomlinson, G Smith. Butterworth-Heinemann, Oxford, Boston 2002; 37–39
  • Eter N, Gobbels M. A new technique for tear film fluorophotometry. Br J Ophthalmol. 2002; 86: 616–619
  • Maurice D M. The dynamics and drainage of tears. Int Ophthalmol Clin. 1973; 13(1)103–116
  • Tsubota K. Tear dynamics and dry eye. Prog Retin Eye Res. 1998; 17(4)565–596
  • Li Y, Kuang K, Yerxa B, Wen Q, Rosskothen H, Fischbarg J. Rabbit conjunctival epithelium transports fluid, and P2Y2(2) receptor agonists stimulate Cl(-) and fluid secretion. Am J Physiol Cell Physiol. 2001; 281(2)C595–C602
  • Creech J L, Do L T, Fatt I, Radke C J. In vivo tear-film thickness determination and implications for tear-film stability. Curr Eye Res. 1998; 17(11)1058–1066
  • Zhu H, Chauhan A. A mathematical model for tear drainage through the canaliculi. Curr Eye Res. 2005; 30(8)621–630
  • Doane M G. Blinking and the mechanics of the lacrimal drainage system. Ophthalmology. 1981; 88(8)844–851
  • Levin M H, Kim J K, Hu J, Verkman A S. Potential difference measurements of ocular surface Na+ absorption analyzed using an electrokinetic model. Invest Ophthalmol Vis Sci. 2006; 47(1)306–316
  • Shiue M H, Kulkarni A A, Gukasyan H J. Pharmacological modulation of fluid secretion in the pigmented rabbit conjunctiva. Life Sci. 2000; 66(7)PL105–PL111
  • Fischbarg J, Diecke F P. A mathematical model of electrolyte and fluid transport across corneal endothelium. J Membr Biol. 2005; 203(1)41–56
  • Zhu H, Chauhan A. A mathematical model for ocular tear and solute balance. Curr Eye Res. 2005; 30(10)841–854
  • Nichols B A. Conjunctiva. Microsc Res Tech. 1996; 33(4)296–319
  • Kompella U B, Kim K J, Lee V H. Active chloride transport in the pigmented rabbit conjunctiva. Curr Eye Res. 1993; 12(12)1041–1048
  • Shi X P, Candia O A. Active sodium and chloride transport across the isolated rabbit conjunctiva. Curr Eye Res. 1995; 14(10)927–935
  • Hosoya K, Kompella U B, Kim K J, Lee V H. Contribution of Na(+)-glucose cotransport to the short-circuit current in the pigmented rabbit conjunctiva. Curr Eye Res. 1996; 15(4)447–451
  • Horibe Y, Hosoya K, Kim K J, Lee V H. Kinetic evidence for Na(+)-glucose co-transport in the pigmented rabbit conjunctiva. Curr Eye Res. 1997; 16(10)1050–1055
  • Turner H C, Alvarez L J, Bildin V N, Candia O A. Immunolocalization of Na-K-ATPase, Na-K-Cl and Na-glucose cotransporters in the conjunctival epithelium. Curr Eye Res. 2000; 21(5)843–850
  • Kompella U B, Kim K J, Shiue M H, Lee V H. Possible existence of Na(+)-coupled amino acid transport in the pigmented rabbit conjunctiva. Life Sci. 1995; 57(15)1427–1431
  • Hosoya K, Horibe Y, Kim K J, Lee V H. Na(+)-dependent L-arginine transport in the pigmented rabbit conjunctiva. Exp Eye Res. 1997; 65(4)547–553
  • Turner H C, Alvarez L J, Candia O A. Identification and localization of acid-base transporters in the conjunctival epithelium. Exp Eye Res. 2001; 72(5)519–531
  • Alvarez L J, Candia O A, Turner H C, Zamudio A C. Phorbol ester modulation of active ion transport across the rabbit conjunctival epithelium. Exp Eye Res. 1999; 69(1)33–44
  • Alvarez L J, Turner H C, Zamudio A C, Candia O A. Serotonin-elicited inhibition of Cl(-) secretion in the rabbit conjunctival epithelium. Am J Physiol Cell Physiol. 2001; 280(3)C581–C592
  • Alvarez L J, Zamudio A C, Candia O A. Cl- secretory effects of EBIO in the rabbit conjunctival epithelium. Am J Physiol Cell Physiol. 2005; 289(1)C138–C147
  • Kompella U B, Kim K J, Shiue M H, Lee V H. Cyclic AMP modulation of active ion transport in the pigmented rabbit conjunctiva. J Ocul Pharmacol Ther. 1996; 12(3)281–287
  • Turner H C, Alvarez L J, Candia O A. Cyclic AMP-dependent stimulation of basolateral K(+)conductance in the rabbit conjunctival epithelium. Exp Eye Res. 2000; 70(3)295–305
  • Shiue M H, Kim K J, Lee V H. Modulation of chloride secretion across the pigmented rabbit conjunctiva. Exp Eye Res. 1998; 66(3)275–282
  • Shiue M H, Gukasyan H J, Kim K J. Characterization of cyclic AMP-regulated chloride conductance in the pigmented rabbit conjunctival epithelial cells. Can J Physiol Pharmacol. 2002; 80(6)533–540
  • Hosoya K, Ueda H, Kim K J, Lee V H. Nucleotide stimulation of Cl(-) secretion in the pigmented rabbit conjunctiva. J Pharmacol Exp Ther. 1999; 291(1)53–59
  • Levin M H, Verkman A S. Aquaporin-dependent water permeation at the mouse ocular surface: in vivo microfluorimetric measurements in cornea and conjunctiva. Invest Ophthalmol Vis Sci. 2004; 45(12)4423–4432
  • Levin M H, Verkman A S. CFTR-regulated chloride transport at the ocular surface in living mice measured by potential differences. Invest Ophthalmol Vis Sci. 2005; 46(4)1428–1434
  • Das B N, Sengupta S, Das B K, Goswami N R. Tear glucose estimation—an alternative to blood glucose estimation. J Indian Med Assoc. 1995; 93(4)127–128
  • Magnani M, Stocchi V, Serafini N. Pig red blood cell hexokinase: regulatory characteristics and possible physiological role. Arch Biochem Biophys. 1983; 226(1)377–387
  • Zurawski C A, McCarey B E, Schmidt F H. Glucose consumption in cultured corneal cells. Curr Eye Res. 1989; 8(4)349–355
  • Novotny J A, Jakobsson E. Computational studies of ion-water flux coupling in the airway epithelium. I. Construction of model. Am J Physiol. 1996; 270: C1751–C1763, (6 Pt 1)
  • Endo Y, Torii R, Yamazaki F. Water drinking causes a biphasic change in blood composition in humans. Pflugers Arch. 2001; 442(3)362–368
  • Mircheff A K. Lacrimal fluid and electrolyte secretion: a review. Curr Eye Res. 1989; 8(6)607–617
  • Jones L T. Epiphora. II. Its relation to the anatomic structures and surgery of the medial canthal region. Am J Ophthalmol. 1957; 43: 203–212
  • Jones L T. Anatomy of the tear system. Int Ophthalmol Clin. 1973; 13: 3–22
  • Pandit J C, Nagyova B, Bron A J, Tiffany J M. Physical properties of stimulated and unstimulated tears. Exp Eye Res. 1999; 68: 247–253
  • Wilson G, Merrill R. The lacrimal drainage system: pressure changes in the canaliculus. Am J Optom Physiol Opt. 1976; 53: 55–59
  • Candia O A, Shi X P, Alvarez L J. Reduction in water permeability of the rabbit conjunctival epithelium by hypotonicity. Exp Eye Res. 1998; 66(5)615–624
  • Crambert G, Hasler U, Beggah A T. Transport and pharmacological properties of nine different human Na, K-ATPase isozymes. J Biol Chem. 2000; 275(3)1976–1986
  • Miyamoto H, Ikehara T, Yamaguchi H. Kinetic mechanism of Na+, K+, Cl–cotransport as studied by Rb+ influx into HeLa cells: effects of extracellular monovalent ions. J Membr Biol. 1986; 92(2)135–150
  • Watsky M A, Jablonski M M, Edelhauser H F. Comparison of conjunctival and corneal surface areas in rabbit and human. Curr Eye Res. 1988; 7(5)483–486
  • Hirayama B A, Lostao M P, Panayotova-Heiermann M. Kinetic and specificity differences between rat, human, and rabbit Na+-glucose cotransporters (SGLT-1). Am J Physiol. 1996; 270: G919–G926, (6 Pt 1)
  • Doughty M J, Blades K, Button N F, Wilson G. Further analysis of the size and shape of cells obtained by impression cytology from the exposed portion of the human bulbar conjunctiva. Ophthalmic Physiol Opt. 2000; 20(5)391–400
  • Gilbard J P. Human tear film electrolyte concentrations in health and dry-eye disease. Int Ophthalmol Clin. 1994; 34(1)27–36
  • Iwata S. Chemical composition of the aqueous phase. Int Ophthalmol Clin. 1973; 13(1)29–46
  • Maurice D M. Electrical potential and ion transport across the conjunctiva. Exp Eye Res. 1973; 15(5)527–532
  • Papa V, Aragona P, Russo S. Comparison of hypotonic and isotonic solutions containing sodium hyaluronate on the symptomatic treatment of dry eye patients. Ophthalmologica. 2001; 215(2)124–127
  • Yen M T, Pflugfelder S C, Feuer W J. The effect of punctum occlusion on tear production, tear clearance, and ocular surface sensation in normal subjects. Am J Ophthalmol. 2001; 131(3)314–323
  • Urtti A, Salminen L. Minimizing systemic absorption of topically administered ophthalmic drugs. Surv Ophthalmol. 1993; 37(6)435–456
  • Candia O A, Alvarez L J, Zamudio A C. Regulation of water permeability in rabbit conjunctival epithelium by anisotonic conditions. Am J Physiol Cell Physiol. 2006; 290(4)C1168–C1178
  • Lange K. Regulation of cell volume via microvillar ion channels. J Cell Physiol. 2000; 185(1)21–35
  • Yokoi N, Komuro A. Non-invasive methods of assessing the tear film. Exp Eye Res. 2004; 78(3)399–407
  • Ishibashi T, Yokoi N, Bron A J. Retention of reversibly thermo-gelling timolol on the human ocular surface studied by video meniscometry. Curr Eye Res. 2003; 27(2)117–122
  • Scuderi A C, De Lazzari A, Miano F, Zola P. Residence time of netilmicin in tears. Cornea. 2002; 21(1)48–50
  • Snibson G R, Greaves J L, Soper N D. Precorneal residence times of sodium hyaluronate solutions studied by quantitative gamma scintigraphy. Eye. 1990; 4: 594–602, (Pt 4)
  • Wilson C G, Zhu Y P, Frier M. Ocular contact time of a carbomer gel (GelTears) in humans. Br J Ophthalmol. 1998; 82(10)1131–1134
  • Meadows D L, Paugh J R, Joshi A, Mordaunt J. A novel method to evaluate residence time in humans using a nonpenetrating fluorescent tracer. Invest Ophthalmol Vis Sci. 2002; 43(4)1032–1039
  • Gelatt K N, MacKay E O, Widenhouse C. Effect of lacrimal punctum occlusion on tear production and tear fluorescein dilution in normal dogs. Vet Ophthalmol. 2006; 9(1)23–27
  • Rubashkin A, Iserovich P, Hernandez J A, Fischbarg J. Epithelial Fluid Transport: Protruding Macromolecules and Space Charges Can Bring about Electro-Osmotic Coupling at the Tight Junctions. J Membr Biol. 2006; 208(3)251–263
  • Turner J R. Show me the pathway! Regulation of paracellular permeability by Na(+)-glucose cotransport. Adv Drug Deliv Rev. 2000; 41(3)265–281
  • Loo D D, Zeuthen T, Chandy G, Wright E M. Cotransport of water by the Na+ /glucose cotransporter. Proc Natl Acad Sci U S A. 1996; 93(23)13367–13370
  • Keener James, Sneyd James. Mathematical Physiology. Springer-Verlag, New York 1998
  • Eskandari S, Wright E M, Loo D D. Kinetics of the reverse mode of the Na/glucose cotransporter. J Membr Biol. 2005; 204(1)23–32
  • Parent L, Supplisson S, Loo D D, Wright E M. Electrogenic properties of the cloned Na+ /glucose cotransporter: II. A transport model under nonrapid equilibrium conditions. J Membr Biol. Jan, 1992; 125(1)63–79, Erratum in: J Membr Biol 1992;130(2):203
  • Yokoi N, Bron A, Tiffany J. Reflective meniscometry: a non-invasive method to measure tear meniscus curvature. Br J Ophthalmol. 1999; 83(1)92–97

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.