155
Views
6
CrossRef citations to date
0
Altmetric
Original Article

Nipradilol Protects Rat Retinal Ganglion Cells from Apoptosis Induced by Serum Deprivation In Vitro and by Diabetes In Vivo

, , , , , & show all
Pages 683-692 | Received 18 May 2008, Accepted 28 Jun 2008, Published online: 02 Jul 2009

REFERENCES

  • Quigley H A, Nickells R W, Kerrigan L A, Pease M E, Thibault D J, Zack D J. Retinal ganglion cell death in experimental glaucoma and after axotomy occurs by apoptosis. Invest Ophthalmol Vis Sci. 1995; 36: 774–786
  • Kerrigan L A, Zack D J, Quigley H A, Smith S D, Pease M E. TUNEL-positive ganglion cells in human primary open-angle glaucoma. Arch Ophthalmol. 1997; 115: 1031–1035
  • Barber A J, Lieth E, Khin S A, Antonetti D A, Buchanan A G, Gardner T W. Neural apoptosis in the retina during experimental and human diabetes. Early onset and effect of insulin. J Clin Invest. 1998; 102: 783–791
  • Pease M E, McKinnon S J, Quigley H A, Kerrigan-Baumrind L A, Zack D J. Obstructed axonal transport of BDNF and its receptor TrkB in experimental glaucoma. Invest Ophthalmol Vis Sci. 2000; 41: 764–774
  • Ino-ue M, Zhang L, Naka H, Kuriyama H, Yamamoto M. Polyol metabolism of retrograde axonal transport in diabetic rat large optic nerve fiber. Invest Ophthalmol Vis Sci. 2000; 41: 4055–4058
  • Caldwell R B, Bartoli M, Behzadian M A, El-Remessy A EB, Al-Shabrawey M, Platt D H, Caldwell R W. Vascular endothelial growth factor and diabetic retinopathy: Pathophysiological mechanisms and treatment perspectives. Diabetes Metab Res Rev. 2003; 19: 442–455
  • Tezel G. Oxidative stress in glaucomatous neurodegeneration: Mechanisms and consequences. Prog Retin Eye Res. 2006; 25: 490–513
  • Vorwerk C K, Gorla M S, Dreyer E B. An experimental basis for implicating excitotoxicity in glaucomatous optic neuropathy. Surv Ophthalmol 1999; 43(Suppl 1)S142–S150
  • Kowluru R A, Engerman R L, Case G L, Kern T S. Retinal glutamate in diabetes and effect of antioxidants. Neurochem Int 2001; 38: 385–390
  • McKinnon S J, Lebman D M, Kerrigan-Baumrind L A, Merges C A, Pease M E, Kerrigan D F, Ransom N L, Tahzib N G, Reitsamer H A, Leukovitch-Verbin H, Quigley H A, Zack D J. Caspase activation and amyloid precursor protein cleavage in rat ocular hypertension. Invest Ophthalmol Vis Sci. 2002; 43: 1077–1087
  • Barber A J, Antonetti D A, Kern T S, Reiter C EN, Soans R S, Krady J K, Levinson S W, Gardner T W, Bronson S K. The Ins2Akita mouse as a model of early retinal complications in diabetes. Invest Ophthalmol Vis Sci 2005; 46: 2210–2218
  • Uchida Y, Nakamura M, Shimizu S, Shirasawa Y, Fujii M. Vasoactive and beta-adrenoceptor blocking properties of 3,4-dihydro-8-(2-hydroxy-3-isopropylamino) propoxy-3-nitroxy-2H-1-benzopyran (K-351), a new antihypertensive agent. Arch Int Pharmacodyn Ther 1983; 262: 132–149
  • Ohira A, Wada Y, Fujii M, Nakamura M, Kasuya Y, Hamada Y, Shigenobu K. Effects of nipradilol (K-351) on alpha-adrenoceptor mediated responses in various isolated tissues. Arch Int Pharmacodyn Ther. 1985; 278: 61–71
  • Kanno M, Araie M, Koibuchi H, Masuda K. Effects of topical nipradilol, a beta blocking agent with alpha blocking and nitroglycerin-like activities, on intraocular pressure and aqueous dynamics in humans. Br J Ophthalmol 2000; 84: 293–299
  • Okamura T, Kitamura Y, Uchiyama M, Toda M, Ayajiki K, Toda N. Canine retinal arterial and arteriolar dilatation induced by nipradilol, a possible glaucoma therapeutic. Pharmacology. 1996; 53: 302–310
  • Hayashi T, Yamada K, Esaki T, Muto E, Iguchi A. The beta adrenoceptor antagonist, nipradilol, preserves the endothelial nitric oxide response in atherosclerotic vessels in rabbit. Life Sci 1997; 61: 1379–1387
  • Mizuno K, Koide T, Saito N, Fujii M, Nagahara M, Tomidokoro A, Tamaki Y, Araie M. Topical nipradilol: Effect on optic nerve head circulation in humans and periocular distribution in monkeys. Invest Ophthalmol Vis Sci 2002; 43: 3243–3250
  • Kashiwagi K, Iizuka Y, Tsukahara S. Neuroprotective effect of nipradilol on purified cultured retinal ganglion cells. J Glaucoma 2002; 11: 231–238
  • Mizuno K, Koide T, Yoshimura M, Araie M. Neuroprotective effect and intraocular penetration of nipradilol, a β -blocker with nitric oxide donative action. Invest Ophthalmol Vis Sci. 2001; 42: 688–694
  • Nakazawa T, Tomita H, Yamaguchi K, Sato Y, Shimura M, Kuwahara S, Tamai M. Neuroprotective effect of nipradilol on axotomized rat retinal ganglion cells. Curr Eye Res 2002; 24: 114–122
  • Taniai M, Sato E, Mizota A, Adachi-Usami E. Protective action of nipradilol against ischemia-induced retinal damage in rats. Ophthalmic Res. 2002; 34: 331–337
  • Tomita H, Nakazawa T, Sugano E, Abe T, Tamai M. Nipradilol inhibits apoptosis by preventing the activation of caspase-3 via S-nitrosylation and the cGMP-dependent pathway. Eur J Pharmacol. 2002; 452: 263–268
  • Nagai-Kusuhara A, Nakamura M, Mukuno H, Kanamori A, Negi A, Seigel G M. cAMP-responsive element binding protein mediates a cGMP/protein kinase G-dependent anti-apoptotic signal induced by nitric oxide in retinal neuro-glial progenitor cells. Exp Eye Res. 2007; 84: 152–162
  • Krishnamoorthy R R, Agarwal P, Prasanna G, Vopat K, Lambert W, Sheedlo H J, Pang I H, Shade D, Wordinger R J, Yorio T, Clark A F, Agarwal N. Characterization of a transformed rat retinal ganglion cell line. Mol Brain Res 2001; 86: 1–12
  • Charles I, Khalyfa A, Kumar D M, Krishnamoorthy R R, Roque R S, Cooper N, Agarwal N. Serum deprivation induces apoptotic cell death of transformed rat retinal ganglion cells via mitochondrial signaling pathways. Invest Ophthalmol Vis Sci 2005; 46: 1330–1338
  • Maher P, Hanneken A. The molecular basis of oxidative stress-induced cell death in an immortalized retinal ganglion cell line. Invest Ophthalmol Vis Sci 2005; 46: 749–757
  • Zeng X X, Ng Y K, Ling E A. Neuronal and microglial response in the retina of streptozotocin-induced diabetic rats. Vis Neurosci 2000; 17: 463–471
  • Martin P M, Roon P, Van Ells T K, Ganapathy V, Smith S B. Death of retinal neurons in streptozotocin-induced diabetic mice. Invest Ophthalmol Vis Sci 2004; 45: 3330–3336
  • Ning X, Baoyu Q, Yuzhen L, Shuli S, Reed E, Li Q Q. Neuro-optic cell apoptosis and microangiopathy in KKAY mouse retina. Int J Mol Med 2005; 13: 87–92
  • Cheung A K, Fung M K, Lo A C, Lam T T, So K F, Chung S S, Chung S K. Aldose reductase deficiency prevents diabetes-induced blood-retinal barrier breakdown, apoptosis, and glial reactivation in the retina of db/db mice. Diabetes 2005; 54: 3119–3125
  • Gastinger M J, Sign R SJ, Barber A J. Loss of cholinergic and dopaminergic amacrine cells in streptozotocin-diabetic rat and Ins2Akita-diabetic mouse retinas. Invest Ophthalmol Vis Sci. 2006; 47: 3143–3150
  • Nakanishi Y, Nakamura M, Mukuno H, Kanamori A, Seigel G M, Negi A. Latanoprost rescues retinal neuro-glial cells from apoptosis by inhibiting caspase-3, which is mediated by p44/p42 mitogen-activated protein kinase. Exp Eye Res 2006; 83: 1108–1117
  • Barber A J, Nakamura M, Wolpert E B, Reiter C EN, Seigel G M, Antonetti D A, Gardner T W. Insulin rescues retinal neurons from apoptosis by a phosphatidylinositol 3-kinase/Akt-mediated mechanism that reduces the activation of capase-3. J Biol Chem 2001; 276: 32814–32821
  • Nakamura M, Barber A J, Antonetti D A, LaNoue K F, Robinson K A, Buse M G, Gardner T W. Excessive hexosamines block the neuroprotective effect of insulin and induce apoptosis in retinal neurons. J Biol Chem. 2001; 276: 43748–43755
  • Mukuno H, Nakamura M, Kanamori A, Nagai A, Negi A, Seigel G M. Unoprostone isopropyl rescues retinal progenitor cells from apoptosis in vitro. Curr Eye Res 2004; 29: 457–464
  • Kanamori A, Nakamura M, Mukuno H, Maeda H, Negi A. Diabetes has an additive effect on neural apoptosis in rat retina with chronically elevated intraocular pressure. Curr Eye Res. 2004; 28: 47–54
  • Kanamori A, Nakamura M, Nakanishi Y, Nagai A, Mukuno H, Yamada Y, Negi A. Akt is activated via insulin/IGF-1 receptor in rat retina with episcleral vein cauterization. Brain Res. 2004; 1022: 195–204
  • Beckman J S, Koppenol W H. Nitric oxide, superoxide, and peroxynitrite: The good, the bad, and the ugly. Am J Physiol. 1996; 271: C1424–C1437
  • Wink D A, Mitchell J B. Chemical biology of nitric oxide: Insights into regulatory, cytotoxic, and cytoprotective mechanisms of nitric oxide. Free Radical Biol Med 1998; 25: 434–456
  • Fiscus R R. Involvement of cyclic GMP and protein kinase G in the regulation of apoptosis and survival in neuronal cells. Neurosignals 2002; 11: 175–190
  • Boje K M. Nitric oxide neurotoxicity in neurodegenerative diseases. Front Biosci 2004; 9: 763–776
  • Kang Y-C, Kim P-K, Choi B-M, Chung H-T, Ha K-S, Kwon Y-G, Kim Y-M. Regulation of programmed cell death in neuronal cells by nitric oxide. In Vivo 2004; 18: 367–376
  • Keynes R G, Garthwaite J. Nitric oxide and its role in ischaemic brain injury. Curr Mol Med. 2004; 4: 179–191
  • Duncan A J, Heales S JR. Nitric oxide and neurological disorders. Mol Aspects Med 2005; 26: 67–96
  • Bolanos J P, Garcia-Nogales P, Almeida A. Provoking neuroprotection by peroxynitrite. Curr Pharm Des. 2004; 10: 867–877
  • Taguchi R, Shirakawa H, Yamaguchi T, Kume T, Katsuki H, Akaike A. Nitric oxide-mediated effect of nipradilol and an α - and β -adrenergic blocker on glutamate neurotoxicity in rat cortical cultures. Eur J Pharmacol. 2006; 535: 86–94
  • Farinelli S E, Park D S, Greene L A. Nitric oxide delays the death of trophic factor-deprived PC12 cells and sympathetic neurons by a cGMP-mediated mechanism. J Neurosci. 1996; 16: 2325–2334
  • Kim Y-M, Chung H-T, Kim S-S, Han J-A, Yoo Y-M, Kim K-M, Lee G-H, Yun H-Y, Green A, Li L, Simmons R L, Billiar T R. Nitric oxide protects PC12 cells from serum deprivation-induced apoptosis by cGMP-dependent inhibition of caspase signaling. J Neurosci. 1999; 19: 6740–6747
  • Allsopp T E. Transduction of survival signals in neurons—take your PIK?. Trends Neurosci 2000; 23: 593
  • Zhao H, Sapolsky R M, Steinberg G K. Phosphatidylinositol-3-kinase/akt survival signal pathways are implicated in neuronal survival after stroke. Mol Neurobiol 2006; 34: 249–270
  • Ha K S, Kim K M, Kwon Y G, Bai S K, Nam W D, Yoo Y M, Kim P K, Chung H T, Billiar T R, Kim Y M. Nitric oxide prevents 6-hydroxydopamine-induced apoptosis in PC12 cells through cGMP-dependent PI3 kinase/Akt activation. FASEB J 2003; 17: 1036–1047
  • Delgado-Esteban M, Martin-Zanca D, Andres-Martin L, Almedida A, Bolanos J P. J Neurochem 2007; 102: 194–205
  • Aviles-Trigueros M, Mayor-Torroglosa S, Garcia-Aviles A, Lafuente M P, Rodriguez M E, Miralles de Imperial J, Villegas-Perez M P, Vidal-Sanz M. Transient ischemia of the retina results in massive degeneration of the retinotectal projection: Long-term neuroprotection with brimonidine. Exp Neurol 2003; 184: 767–777
  • Manabe S, Lipton S A. Divergent NMDA signals leading to proapoptotic and antiapoptotic pathways in the rat retina. Invest Ophthalmol Vis Sci 2003; 44: 385–392
  • Tzekov R, Arden G B. The electroretinogram in diabetic retinopathy. Surv Ophthalmol 1999; 44: 53–60
  • Klemp K, Sander B, Brockhoff P B, Vaag A, Lund-Anderson H, Larsen M. The multifocal ERG in diabetic patients without retinopathy during euglycemic clamping. Invest Ophthalmol Vis Sci. 2005; 46: 2620–2626
  • Verrotti A, Lobefalo L, Petitti M T, Mastropasqua L, Morgese G, Chiarelli F, Gallenga P E. Relationship between contrast sensitivity and metabolic control in diabetics with and without retinopathy. Ann Med. 1998; 30: 369–374
  • Lopes d e, Faria J M, Katsumi O, Cagliero E, Nathan D, Hirose T. Neurovisual abnormalities preceding the retinopathy in patients with long-term type 1 diabetes mellitus. Graefes Arch Clin Exp Ophthalmol. 2001; 239: 643–648
  • Chihara E, Matsuoka T, Ogura Y, Matsumura M. Retinal nerve fiber layer defect as an early manifestation of diabetic retinopathy. Ophthalmology 1993; 100: 1147–1151
  • Takahashi H, Goto T, Shoji T, Tanito M, Park M, Chihara E. Diabetes-associated retinal nerve fiber damage evaluated with scanning laser polarimetry. Am J Ophthalmol 2006; 142: 88–94
  • Lieth E, Barber A J, Xu B, Dice C, Ratz M J, Tanase D, Strother J M. Glial reactivity and impaired glutamate metabolism in short-term experimental diabetic retinopathy. Diabetes 1998; 47: 815–820
  • Rungger-Brandle E, Dosso A A, Leuenberger P M. Glial reactivity, an early feature of diabetic retinopathy. Invest Ophthalmol Vis Sci. 2000; 41: 1971–1980
  • Barber A J, Antonetti D A, Gardner T W. Altered expression of retinal occludin and glial fibrillary acidic protein in experimental diabetes. Invest Ophthalmol Vis Sci 2000; 41: 3561–3568
  • Li Q, Puro D G. Diabetes-induced dysfunction of the glutamate transporter in retinal Muller cells. Invest Ophthalmol Vis Sci 2002; 43: 3109–3116
  • Gaucher D, Chiappore J-A, Pâques M, Simonutti M, Boitard C, Sahel J A, Massin P, Picaud S. Microglial changes occur without neural cell death in diabetic retinopathy. Vision Res 2007; 47: 612–623
  • Feit-Leichman R A, Kinouchi R, Takeda M, Fan Z, Mohr S, Kern T S, Chen D F. Vascular damage in a mouse model of diabetic retinopathy: Relation to neuronal and glial changes. Invest Ophthalmol Vis Sci. 2005; 46: 4281–4287
  • Nakamura M, Kanamori A, Negi A. Diabetes mellitus as a risk factor for glaucomatous optic neuropathy. Ophthalmologica. 2005; 219: 1–10
  • Chen W, Jump D B, Grant M B, Esselman W J, Busik J V. Dyslipidemia, but not hyperglycemia, induces inflammatory adhesion molecules in human retinal vascular endothelial cells. Invest Ophthalmol Vis Sci 2003; 44: 5016–5022
  • Joussen A M, Poulaki V, Le M L, Koizumi K, Esser C, Janicki H, Schraemeyer U, Kociok N, Fauser S, Kirchhof B, Kern T S, Adamis A P. A central role for inflammation in the pathogenesis of diabetic retinopathy. FASEB J 2004; 18: 1450–1452
  • Ono R, Kakehashi A, Ito Y, Sugi N, Makino S, Kobayashi E, Hakamada Y, Takagi Y, Kitazume Y, Kawakami M. Effect of topical nipradilol on retinal microvascular leukocyte adhesion in diabetic rats. Ophthalmic Res 2006; 38: 270–273

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.