351
Views
41
CrossRef citations to date
0
Altmetric
Original Article

Localization of Lysozyme Sorption to Conventional and Silicone Hydrogel Contact Lenses Using Confocal Microscopy

, , , &
Pages 683-697 | Received 16 Feb 2009, Accepted 30 Apr 2009, Published online: 09 Sep 2009

REFERENCES

  • Ratner B D, Horbett T A, Mateo N B. Contact lens spoilation—Part 1: Biochemical aspect of lens spoilation. Contact Lens Practice, M Ruben, M Guillon. Chapman & Hall, London 1994; 1083–1098
  • Hart D E, DePaolis M, Ratner B D, Mateo N B. Surface analysis of hydrogel contact lenses by ESCA. Clao J 1993; 19: 169–173
  • Brennan N A, Coles M L. Deposits and symptomatology with soft contact lens wear. Int Contact Lens Clin 2000; 27: 75–100
  • Jones L, Franklin V, Evans K, Sariri R, Tighe B. Spoilation and clinical performance of monthly vs. three monthly Group II disposable contact lenses. Optom Vis Sci 1996; 73: 16–21
  • Pritchard N, Fonn D, Weed K. Ocular and subjective responses to frequent replacement of daily wear soft contact lenses. Clao J 1996; 22: 53–59
  • Gellatly K W, Brennan N A, Efron N. Visual decrement with deposit accumulation of HEMA contact lenses. Am J Optom Physiol Opt 1988; 65: 937–941
  • Jones L, Mann A, Evans K, Franklin V, Tighe B. An in vivo comparison of the kinetics of protein and lipid deposition on group II and group IV frequent-replacement contact lenses. Optom Vis Sci 2000; 77: 503–510
  • Keith D J, Christensen M T, Barry J R, Stein J M. Determination of the lysozyme deposit curve in soft contact lenses. Eye Contact Lens 2003; 29: 79–82
  • Nason R J, Vogel H, Tarbell B J, Yi F P, Mertz G W. A clinical evaluation of frequent replacement contact lenses on patients currently wearing premium reusable daily wear soft contact lenses. J Am Optom Assoc 1993; 64: 188–195
  • Vermeltfoort P B, Rustema-Abbing M, de Vries J, et al. Influence of day and night wear on surface properties of silicone hydrogel contact lenses and bacterial adhesion. Cornea 2006; 25: 516–523
  • Santos L, Rodrigues D, Lira M, et al. Bacterial adhesion to worn silicone hydrogel contact lenses. Optom Vis Sci 2008; 85: 520–525
  • Donshik P C, Ehlers W H, Ballow M. Giant papillary conjunctivitis. Immunol Allergy Clin North Am 2008; 28: 83–103
  • Jones L, Dumbleton K. Soft lens extended wear and complications. Manual of Contact Lens Prescribing and Fitting, M M Hom, A Bruce. Butterworth-Heinemann, Oxford 2006; 393–441
  • Donshik P C. Contact lens chemistry and giant papillary conjunctivitis. Eye Contact Lens 2003; 29: 37–39
  • Bohnert J L, Horbett T A, Ratner B D, Royce F H. Adsorption of proteins from artificial tear solutions to contact lens materials. Invest Ophthalmol Vis Sci 1988; 29: 362–373
  • Jones L, Evans K, Sariri R, Franklin V, Tighe B. Lipid and protein deposition of N-vinyl pyrrolidone-containing group II and group IV frequent replacement contact lenses. Clao J 1997; 23: 122–126
  • Tripathi P C, Tripathi R C. Analysis of glycoprotein deposits on disposable soft contact lenses. Invest Ophthalmol Vis Sci 1992; 33: 121–125
  • Castillo E J, Koenig J L, Anderson J M. Characterization of protein adsorption on soft contact lenses. IV. Comparison of in vivo spoilage with the in vitro adsorption of tear proteins. Biomaterials 1986; 7: 89–96
  • Garrett Q, Chatelier R C, Griesser H J, Milthorpe B K. Effect of charged groups on the adsorption and penetration of proteins onto and into carboxymethylated poly(HEMA) hydrogels. Biomaterials 1998; 19: 2175–2186
  • Garrett Q, Laycock B, Garrett R W. Hydrogel lens monomer constituents modulate protein sorption. Invest Ophthalmol Vis Sci 2000; 41: 1687–1695
  • Zhang S, Borazjani R N, Salamone J C, Ahearn D G, Crow S A, Jr, Pierce G E. In vitro deposition of lysozyme on etafilcon A and balafilcon A hydrogel contact lenses: Effects on adhesion and survival of Pseudomonas aeruginosa and Staphylococcus aureus. Contact Lens Ant Eye 2005; 28: 113–119
  • Subbaraman L N, Glasier M A, Senchyna M, Sheardown H, Jones L. Kinetics of in vitro lysozyme deposition on silicone hydrogel, PMMA, and FDA groups I, II, and IV contact lens materials. Curr Eye Res 2006; 31: 787–796
  • Jones L, Senchyna M, Glasier M A, et al. Lysozyme and lipid deposition on silicone hydrogel contact lens materials. Eye Contact Lens 2003; 29: 75–79
  • Suwala M, Glasier M A, Subbaraman L N, Jones L. Quantity and conformation of lysozyme deposited on conventional and silicone hydrogel contact lens materials using an in vitro model. Eye Contact Lens 2007; 33: 138–143
  • Green-Church K B, Nichols J J. Mass spectrometry-based proteomic analyses of contact lens deposition. Mol Vis 2008; 14: 291–297
  • Merindano M D, Canals M, Saona C, Potau J, Costa J. Observation of deposits on disposable contact lenses by bio-, light and scanning electron microscopy. Contact Lens Ant Eye 1998; 21: 55–59
  • Miller B. Observations of deposits on soft contact lenses by different methods of light microscopy, scanning microscopy, and electron microprobe analysis. Int Contact Lens Clin 1980; 3–4: 22–35
  • Versura P, Maltarello M C, Roomans G M, Caramazza R, Laschi R. Scanning electron microscopy, X-ray microanalysis and immunohistochemistry on worn soft contact lenses. Scanning Microsc 1988; 2: 397–410
  • Krcova Z. Image analysis of contact lens visible deposits, haze, and mechanical defects. Int Contact Lens Clin 1995; 22: 23–31
  • Bohnke M, Masters B R. Confocal microscopy of the cornea. Prog Retin Eye Res 1999; 18: 553–628
  • Tata B, Raj B. Confocal laser scanning microscopy: Applications in material science and technology. Bull Mater Sci 1998; 21: 263–278
  • Pygall S R, Whetstone J, Timmins P, Melia C D. Pharmaceutical applications of confocal laser scanning microscopy: The physical characterization of pharmaceutical systems. Adv Drug Deliv Rev 2007; 59: 1434–1452
  • Stricker S A, Whitaker M. Confocal laser scanning microscopy of calcium dynamics in living cells. Microsc Res Tech 1999; 46: 356–369
  • Masters B R, Bohnke M. Confocal microscopy of the human cornea in vivo. Int Ophthalmol 2001; 23: 199–206
  • Meadows D L, Paugh J R. Use of confocal microscopy to determine matrix and surface protein deposition profiles in hydrogel contact lenses. Clao J 1994; 20: 237–241
  • Luensmann D, Glasier M A, Zhang F, Bantseev V, Simpson T, Jones L. Confocal microscopy and albumin penetration into contact lenses. Optom Vis Sci 2007; 84: 839–847
  • Garrett Q, Garrett R W, Milthorpe B K. Lysozyme sorption in hydrogel contact lenses. Invest Ophthalmol Vis Sci 1999; 40: 897–903
  • Fullard R J, Tucker D L. Changes in human tear protein levels with progressively increasing stimulus. Invest Ophthalmol Vis Sci 1991; 32: 2290–2301
  • Zhou L, Beuerman R W, Foo Y, Liu S, Ang L P, Tan D T. Characterisation of human tear proteins using high-resolution mass spectrometry. Ann Acad Med Singapore 2006; 35: 400–407
  • Soltys-Robitaille C E, Ammon D M, Jr, Valint P L, Jr, Grobe G L, 3rd. The relationship between contact lens surface charge and in vitro protein deposition levels. Biomaterials 2001; 22: 3257–3260
  • Myers R I, Larsen D W, Tsao M, et al. Quantity of protein deposited on hydrogel contact lenses and its relation to visible protein deposits. Optom Vis Sci 1991; 68: 776–782
  • Tighe B. Contact lens materials. Contact Lenses, A Phillips, L Speedwell. Butterworth-Heinemann, Edinburgh 2007; 59–78
  • Holden B A. The Glenn A Fry Award lecture 1988: The ocular response to contact lens wear. Optom Vis Sci 1989; 66: 717–733
  • Fonn D, Bruce A S. A review of the Holden-Mertz criteria for critical oxygen transmission. Eye Contact Lens 2005; 31: 247–251
  • Papas E. On the relationship between soft contact lens oxygen transmissibility and induced limbal hyperaemia. Exp Eye Res 1998; 67: 125–131
  • Nicolson P C, Vogt J. Soft contact lens polymers: An evolution. Biomaterials 2001; 22: 3273–3283
  • Stapleton F, Stretton S, Papas E, Skotnitsky C, Sweeney D F. Silicone hydrogel contact lenses and the ocular surface. Ocul Surf 2006; 4: 24–43
  • Lorentz H, Jones L. Lipid deposition on hydrogel contact lenses: How history can help us today. Optom Vis Sci 2007; 84: 286–295
  • Cheung S W, Cho P, Chan B, Choy C, Ng V. A comparative study of biweekly disposable contact lenses: Silicone hydrogel versus hydrogel. Clin Exp Optom 2007; 90: 124–131
  • Santos L, Rodrigues D, Lira M, et al. The influence of surface treatment on hydrophobicity, protein adsorption and microbial colonization of silicone hydrogel contact lenses. Contact Lens Ant Eye 2007; 30: 183–188
  • Dumbleton K. Noninflammatory silicone hydrogel contact lens complications. Eye Contact Lens 2003; 29: 186–189
  • Zhao Z, Fu H, Skotnitsky C C, Sankaridurg P R, Willcox M D. IgE antibody on worn highly oxygen-permeable silicone hydrogel contact lenses from patients with contact lens-induced papillary conjunctivitis (CLPC). Eye Contact Lens 2008; 34: 117–121
  • Santodomingo-Rubido J, Wolffsohn J S, Gilmartin B. Adverse events and discontinuations during 18 months of silicone hydrogel contact lens wear. Eye Contact Lens 2007; 33: 288–292
  • Tighe B. Silicone hydrogel materials: How do they work?. Silicone Hydrogels: The Rebirth of Continuous Wear Contact Lenses, D F Sweeney. Butterworth-Heinemann, Oxford 2000; 1–21
  • Sack R A, Tan K O, Tan A. Diurnal tear cycle: Evidence for a nocturnal inflammatory constitutive tear fluid. Invest Ophthalmol Vis Sci 1992; 33: 626–640
  • Bright A M, Tighe B J. The composition and interfacial properties of tears, tear substitutes and tear models. J Br Contact Lens Asso 1993; 16: 57–66
  • Rasband W S. U.S. National Institutes of Health, Bethesda, MD 1997–2008, ImageJ, Version 1.38x (07/13/2007) ed
  • Horbett T A, Weathersby P K. Adsorption of proteins from plasma to a series of hydrophilic-hydrophobic copolymers. I. Analysis with the in situ radioiodination technique. J Biomed Mater Res 1981; 15: 403–423
  • Ceska M, Sjodin A V, Grossmuller F. Some quantitative aspects of the labeling of proteins with 125I by the iodine monochloride method. Biochem J 1971; 121: 139–143
  • Uniyal S, Brash J L. Patterns of adsorption of proteins from human plasma onto foreign surfaces. Thromb Haemost 1982; 47: 285–290
  • Fatt I. The definition of thickness for a lens. Am J Optom Physiol Opt 1979; 56: 324–337
  • Garrett Q, Garrett R W, Milthorpe B K. Lysozyme sorption in hydrogel contact lenses. Invest Ophthalmol Vis Sci 1999; 40: 897–903
  • Hayward J A, Chapman D. Biomembrane surfaces as models for polymer design: The potential for haemocompatibility. Biomaterials 1984; 5: 135–142
  • Young G, Bowers R, Hall B, Port M. Six month clinical evaluation of a biomimetic hydrogel contact lens. Clao J 1997; 23: 226–236
  • Hall B, Jones S, Young G, Coleman S. The on-eye dehydration of proclear compatibles lenses. Clao J 1999; 25: 233–237
  • Taddei P, Balducci F, Simoni R, Monti P. Raman, IR and thermal study of a new highly biocompatible phosphorylcholine-based contact lens. J Mol Struct 2005; 744: 507–514
  • Braun R M, Ingham S J, Harmon P S, Hook D J. Surface and depth profile investigation of a phosphorylcholine-based contact lens using time of flight secondary ion mass spectrometry. J Vac Sci Technol A 2007; 25: 866–871
  • Haugland R P. Invitrogen: A Guide to Fluorescent Probes and Labeling Technologies, 10th ed. Molecular Probes, Eugene, OR 2005; 1126
  • Stewart W W. Lucifer dyes—highly fluorescent dyes for biological tracing. Nature 1981; 292: 17–21
  • Bingaman S, Huxley V H, Rumbaut R E. Fluorescent dyes modify properties of proteins used in microvascular research. Microcirculation 2003; 10: 221–231
  • Teske C A, Schroeder M, Simon R, Hubbuch J. Protein-labeling effects in confocal laser scanning microscopy. J Phys Chem B 2005; 109: 13811–13817
  • Senchyna M, Jones L, Louie D, May C, Forbes I, Glasier M. Quantitative and conformational characterization of lysozyme deposited on balafilcon and etafilcon contact lens materials. Curr Eye Res 2004; 28: 25–36
  • Garrett Q, Laycock B, Garrett R W. Hydrogel lens monomer constituents modulate protein sorption. Invest Ophthalmol Vis Sci 2000; 41: 1687–1695
  • Maissa C, Franklin V, Guillon M, Tighe B. Influence of contact lens material surface characteristics and replacement frequency on protein and lipid deposition. Optom Vis Sci 1998; 75: 697–705
  • Rovira-Bru M, Giralt F, Cohen Y. Protein adsorption onto zirconia modified with terminally grafted polyvinylpyrrolidone. J Colloid Interface Sci 2001; 235: 70–79
  • Weikart C M, Matsuzawa Y, Winterton L, Yasuda H K. Evaluation of plasma polymer-coated contact lenses by electrochemical impedance spectroscopy. J Biomed Mater Res 2001; 54: 597–607
  • Nicolson P C, Baron R C, Chabrecek P, et al. Extended Wear Ophthalmic Lens. U.S. Patent No. 5760100, 1998
  • Grobe G L, Kunzler J, Seelye D, Salamone J. Silicone hydrogels for contact lens applications. Polym Mater Sci Eng 1999; 80: 108–109
  • Lopez-Alemany A, Compan V, Refojo M F. Porous structure of Purevision versus Focus Night&Day and conventional hydrogel contact lenses. J Biomed Mater Res 2002; 63: 319–325
  • Steffen R, McCabe K. Finding the comfort zone. Contact Lens Spectrum 2004; 13: 3
  • Steffen R, Schnider C. A next generation silicone hydrogel lens for daily wear. Part 1—Material properties. Optician 2004; 227: 23–25
  • Mccabe K P, Molock F F, Hill G A, et al. Biomedical Devices Containing Internal Wetting Agents. U.S. Patent No. 20050154080, 2005
  • Riley C, Young G, Chalmers R. Prevalence of ocular surface symptoms, signs, and uncomfortable hours of wear in contact lens wearers: The effect of refitting with daily-wear silicone hydrogel lenses (senofilcon A). Eye Contact Lens 2006; 32: 281–286
  • Brennan N A, Coles M L, Ang J H. An evaluation of silicone-hydrogel lenses worn on a daily wear basis. Clin Exp Optom 2006; 89: 18–25
  • Gonzalez-Meijome J M, Lopez-Alemany A, Almeida J B, Parafita M A, Refojo M F. Microscopic observation of unworn siloxane-hydrogel soft contact lenses by atomic force microscopy. J Biomed Mater Res B: Appl Biomater 2006; 76: 412–418
  • Gonzalez-Meijome J M, Lopez-Alemany A, Almeida J B, Parafita M A, Refojo M F. Microscopic observations of superficial ultrastructure of unworn siloxane-hydrogel contact lenses by cryo-scanning electron microscopy. J Biomed Mater Res B: Appl Biomater 2006; 76: 419–423
  • Gachon A M, Bilbault T, Dastugue B. Protein migration through hydrogels: A tool for measuring porosity application to hydrogels used as contact lenses. Anal Biochem 1986; 157: 249–255
  • Wood J M, Attwood D, Collett J H. Characterization of Poly (2-Hydroxyethyl Methacrylate) Gels. Drug Dev Ind Pharm 1983; 9: 93–101
  • Gatin E, Alexandreanu D, Popescu A, Berlic C, Alexandreanu I. Correlations between permeability properties and the pore-size distribution of the porous media “hydron” useful as contact lenses. Phusica Medica 1999; XVI: 13–19
  • Davidson R S, Hilchenbach M M. The use of fluorescent probes in immunochemistry. Photochem Photobiol 1990; 52: 431–438
  • Teske C A, von Lieres E, Schroder M, Ladiwala A, Cramer S M, Hubbuch J J. Competitive adsorption of labeled and native protein in confocal laser scanning microscopy. Biotechnol Bioeng 2006; 95: 58–66
  • Crandall R E, Janatova J, Andrade J D. The effects of radioiodination and fluorescent labeling on albumin. Prep Biochem 1981; 11: 111–138
  • Banks P R, Paquette D M. Comparison of three common amine reactive fluorescent probes used for conjugation to biomolecules by capillary zone electrophoresis. Bioconjug Chem 1995; 6: 447–458
  • Guilbault G. General aspects of luminescence spectroscopy. Practical Fluorescence, G Guilbault. Marcel Dekker, New York 1990; 1–40
  • Furstenberg A, Vauthey E. Excited-state dynamics of the fluorescent probe Lucifer Yellow in liquid solutions and in heterogeneous media. Photochem Photobiol Sci 2005; 4: 260–267
  • Rumbaut R E, Sial A J. Differential phototoxicity of fluorescent dye-labeled albumin conjugates. Microcirculation 1999; 6: 205–213
  • Hungerford G, Benesch J, Mano J F, Reis R L. Effect of the labeling ratio on the photophysics of fluorescein isothiocyanate (FITC) conjugated to bovine serum albumin. Photochem Photobiol Sci 2007; 6: 152–158
  • Benchaib M, Delorme R, Pluvinage M, Bryon P A, Souchier C. Evaluation of five green fluorescence-emitting streptavidin-conjugated fluorochromes for use in immunofluorescence microscopy. Histochem Cell Biol 1996; 106: 253–256

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.