1,428
Views
49
CrossRef citations to date
0
Altmetric
Mini-Review

Advances in Retinal Prosthetic Research: A Systematic Review of Engineering and Clinical Characteristics of Current Prosthetic Initiatives

, &
Pages 334-347 | Received 10 May 2016, Accepted 05 Dec 2016, Published online: 26 Feb 2017

References

  • Luo YH, da Cruz L. A review and update on the current status of retina prostheses (bionic eye). Br Med Bull 2014;109:1–14.
  • Weiland AD, Cho AK, Humayun MS. Retinal prostheses: current clinical results and future needs. Ophthalmology 2011;118:2227–2237.
  • Stingl K, Hortdorfer G, Greppmaier U, Bruckmann A, Wilhelm B, Wrobel W, et al. Vision mediated by the subretinal implant: Improvement for activities of daily living – preliminary results. Invest Ophthalmol Vis Sci [Abstract] 2011;52:ARVO E-Abstract 456.
  • Stingl K, Bartz-Schmidt KU, Besch D, Chee CK, Cottrial CL, Gekeler F, et al. Subretinal visual implant alpha-IMS – Clinical trial interim report. Vis Res 2015;111:149–160.
  • Barry MP, Dagniele G, Argus II Study Group. Use of the argus II retinal prosthesis to improve visual guidance of fine hand movements. Invest Ophthalmol Vis Sci 2012;53:5095–5101.
  • Chuang AT, Margo CE, Greenberg PB. Retinal implants: A systematic review. Br J Ophthalmol 2014;98:852–856.
  • Lorach H, Goetz G, Smith R, Lei X, Mandel Y, Kamins T, et al. Photovoltaic restoration of sight with high visual acuity. Nat Med 2015;21:476–482.
  • Garg SJ, Federman J. Optogenetics, Visual prosthesis, and electrostimulation for retinal dystrophies. Curr Opin Ophthalmol 2013;24:407–414.
  • Margalit E, Thoreson WB. Inner retinal mechanisms engaged by retinal electrical stimulation. Invest Ophthalmol Vis Sci 2006;47:2606–2612.
  • Ong JM, da Cruz L. The bionic eye: A review. Clin Exp Ophthalmol 2012;40:6–17.
  • Matthaei M, Zeitz O, Keseru M, Wagenfeld L, Hornig R, Post N, et al. Progress in the development of vision prostheses. Ophthalmologica 2011;225:187–192.
  • Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA Statement. PloS Med 2009;6:e1–e6.
  • Weiland JD, Humayun MS. Retinal Prosthesis. Neural Engineering, 2nd Ed. New York, NY: He B; 2013:635–655.
  • Humayun MS, Dorn JD, da Cruz L, Dagniele G, Sahel JA, Stanga PE, et al. Interim results from the international trial of second sight’s visual prosthesis. Ophthalmology 2012;119:779–788.
  • Piyathaisere DV, Margalit E, Chen SJ, Shyu JS, D’Anna SA, Weiland JD, et al. Heat effects on the retina. Ophthalmic Surg Lasers Imaging 2003;34:114–120.
  • Waschkowski F, Hesse S, Rieck AC, Lohmann T, Brockmann C, Laube T, et al. Development of Very Large Electrode Arrays for epiretinal stimulation (VLARS). Biomed Eng Online 2014;13:e1–15.
  • Rosessler G, Laube T, Brockmann C, Kirschkamp T, Mazinani B, Menzel-Severing J, et al. Angiographic findings following tack fixation of a wireless epiretinal retina implant device. Graefes Arch Clin Exp Ophthalmol 2011;249:1281–1286.
  • Margalit E, Maia M, Weiland JD, Geenberg RJ, Fujii GY, Torres G, et al. Retinal Prosthesis for the Blind. Surv Ophthalmol 2002;47:335–357.
  • Yue L, Falabella P, Christopher P, Wuyyuru V, Dorn J, Schor P, et al. Ten-year follow-up of a blind patient chronically implanted with epiretinal prosthesis argus I. Ophthalmology 2015;122:2545–2554.
  • Luo YHH, da Cruz L. The argus II retinal prosthesis system. Prog Retin Eye Res 2016;50:89–107.
  • Humayun MS, Dorn JD, Ahuja AK, Caspi A, Filley E, Dagniele G, et al. Preliminary 6 month results from the Argus II epiretinal prosthesis feasibility study. Conf Proc IEEE Eng Med Biol Soc 2009; 2009:4566–4568.
  • Da Cruz L, Dorn JD, Humayun MS, Dagniele G, Handa J, Barale PO, et al. Five-year safety and performance results from the argus II retinal prosthesis system clinical trial. Ophthalmology 2016; EPub:1–7.
  • Liu Y, Park J, Lang RJ, Emami-Neyestanak A, Pellegrino S, Humayun MS, et al. Parylene origami structure for intraocular implantation. Transducers 2013;2013:1549–1553.
  • Richard G. Visual perception after long-term implantation of a retinal implant. Invest Ophthalmol Vis Sci 2008;49:1786.
  • Eckmiller R, Neumann D, Baruth O. Tunable retina encoders for retinal implants: Why and how. J Neural Eng 2005;2:S91–S104.
  • Keseru M, Feucht M, Bornfeld N, Laube T, Walter P, Rossler G, et al. Acute electrical stimulation of the human retina with an epiretinal electrode array. Act Ophth 2012;90:e1–e8.
  • Eckmiller R, Hunermann R, Becker M. Exploration of a dialog-based tunable retina encoder for retina implants. Neurocomputing 1999;26:1005–1011.
  • Hornig R, Laube T, Walter P, Velikay-Parel M, Bornfeld N, Feucht M, et al. A method and technical equipment for an acute human trial to evaluate retinal implant technology. J Neural Eng 2005;2:129–134.
  • Intelligent Medical Implants GmBH. IRIS PILOT Extended Pilot Study With a Retinal Implant System. In: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). 2000 - [cited 2015 September 1]. Available from https://clinicaltrials.gov/ct2/show/NCT0042 7180. NLM Identifier NCT00427180
  • Klauke S, Goertz M, Rein S, Hoehl D, Thomas U, Eckhorn R, et al. Stimulation with a wireless intraocular epiretinal implant elicits visual perception in blind humans. Invest Ophthalmol Vis Sci 2011;52:449–455.
  • Gerding H, Benner FP, Taneri S. Experimental Implantation of epiretinal retina implants (EPI-RET) with an IOL-type receiver unit. J Neural Eng 2007;4:38–49.
  • Menzel-Severing J, Laube T, Brockmann C, Bornfeld N, Mokwa W, Mazinani B, et al. Implantation and explantation of an active epiretinal visual prosthesis: 2-year follow-up data from the EPIRET3 prospective clinical trial. Eye 2012;26:501–509.
  • Stieglitz T, Haberer W, Lau C, Goertz M. Development of an inductively coupled epiretinal vision prosthesis. Conf Proc IEEE Eng Med Biol Soc 2004;2:4178–4181.
  • Rizzo JF. Update on retinal prosthetic research: The Boston retinal implant project. J Neur-Ophthalmol 2011;31:160–168.
  • Chow AY, Chow VY, Packo KH, Pollack JS. The artificial silicon retina microchip for the treatment of vision loss from retinitis pigmentosa. Arch Ophthalmol 2004;122:460–469.
  • Shire DB, Kelly SK, Chen J, Doyle P, Gingerich MD, Cogan SF, et al. Development and implantation of a minimally invasive wireless subretinal neurostimulator. IEEE Trans Biomed Eng 2009;56:2502–2511.
  • Weiland JD, Liu W, Humayun MS. Retinal prosthesis. Annu Review Biomed Eng 2005;7:361–401.
  • Pardue MT, Phillips MJ, Yin H, Fernandes A, Cheng Y, Chow AY, et al. Possible sources of neuroprotection following subretinal silicon chip implantation in RCS rats. J Neural Eng 2005;2:39–47.
  • Zrenner E, Bartz-Schmidt KU, Benav H, Besch D, Bruckmann A, Gabel VP, et al. Subretinal electronic chips allow blind patients to read letters and combine them to words. Proc R Soc B 2011;278:1489–1497.
  • Zrenner E, Stett A, Weiss S, Aramant RB, Guenther E, Kohler K, et al. Can Subretinal Microphotodiodes Successfully Replace Degenerated Photoreceptors? Vis Res 1999;39:2555–2567.
  • Kitiratschky VBD, Stingl K, Wilhelm B, Peters T, Besch D, Sachs H, et al. Safety evaluation of “retina imlant alpha IMS” – A prospective clinical trial. Graefes Arch Clin Exp Ophthalmol 2015;253:381–387.
  • Besch D, Sachs H, Szurman P, Gulicher D, Wilke R, Reinert S, et al. Extraocular surgery for implantation of an active subretinal visual prosthesis with external connections: Feasibility and outcome in seven patients. Br J Ophthalmol 2008;92:1361–1368.
  • Stingl K, Bartz-Schmidt KU, Besch D, Braun A, Bruckmann A, Gekeler F, et al. Artificial vision with wirelessly powered subretinal electronic implant alpha-IMS. Proc R Soc B 2013;280:e1–e8.
  • Zrenner E, Wilke R, Sachs H, Bartz-Schmidt K, Gekeler F, Besch D, et al. Visual Sensations mediated by subretinal microelectrode arrays implanted into blind retinitis pigmentosa patients. Biomed Technol 2008;53:218–220.
  • Rizzo JF, Shire DB, Kelly SK, Troyk P, Gingerich M, McKee B, et al. Overview of the boston retinal prosthesis: challenges and opportunities to restore useful vision to the blind. Conf Proc IEEE Eng Med Biol Soc 2011;2011:7492–7495.
  • Rizzo JF, Shire DB, Kelly SK, Troyk P, Gingerich M, McKee B, et al. Development of the boston retinal prosthesis. Conf Proc IEEE Eng Med Biol Soc 2011;2011:3135–3138.
  • Kelly SK, Shire DB, Chen J, Doyle P, Gingerich MD, Cogan SF, et al. A hermetic wireless subretinal neurostimulator for vision prostheses. IEEE Trans Biomed Eng 2011;58:3197–3205.
  • Kelly SK, Shire DB, Doyle PS, Gingerich MD, Drohan WA, Rizzo JF, et al. The Boston Retinal Prosthesis: A 15-channel Hermetic Wireless Neural Stimulator. Appl Sci Biomed Commun Technol 2009;e1–e6.
  • Mathieson K, Loudin J, Goetz G, Huie P, Wang L, Kamins TI, et al. Photovoltaic retinal prosthesis with high pixel density. Nat Photonics 2012;6:391–398.
  • Loudin JD, Simanovskii DM, Vijayraghavan K, Sramek CK, Butterwick AF, Huie P, et al. Optoelectronic retinal prosthesis: system design and performance. J. Neural Eng 2007;4:72–84.
  • Palanker D, Goetz G, Lorach H, Lei X, Mandel Y, Kamins T, et al. Photovoltaic restoration of sight with high visual acuity in rats with retinal degeneration. SPIE Proceedings Ophth Technol 2015;9307:e1–e5.
  • Lee DY, Lorach H, Huie P, Palanker D. Implantation of Modular Photovoltaic Subretinal Prosthesis. Ophthalmic Surg Lasers Imaging 2016;47:171–174.
  • Wang L, Mathieson K, Kamins TI, Loudin JD, Galambos L, Goetz G, et al. Photovoltaic retinal prosthesis: implant fabrication and performance. J Neural Eng 2012;9:1–11.
  • Jeong J, Lee SW, Min KS, Shin S, Jun SB, Kim SJ. Liquid crystal polymer (LCP), an attractive substrate for retinal implant. Sensor Mater 2012;24:189–203.
  • Jeong J, Bae SH, Min KS, Seo JM, Chung H, Kim SJ. A miniaturized, eye-conformable, and long-term reliable retinal prosthesis using monolithic fabrication of liquid crystal polymer (LCP). IEEE Trans Biomed Eng 2015;62:982–989.
  • Jeong J, Shin S, Lee GJ, Gwon TM, Park JH, Kim SJ. Advancements in fabrication process of microelectrode array for a retinal prosthesis. IEEE EMBS Conf 2013;35:5295–5299.
  • Zhou JA, Woo SJ, Park SI, Kim ET, Seo JM, Chung H, et al. A suprachoroidal electrical retinal stimulator design for long-term animal experiments and in vivo assessment of its feasibility and biocompatibility in rabbits. J Biomed Biotechnol 2008;2008:1–10.
  • Jeong J, Bae SH, Seo JM, Chung H, Kim SJ. Long-term evaluation of a liquid crystal polymer (LCP)-based retinal prosthesis. J. Neural Eng 2016;13:1–12.
  • Kim ET, Seo JM, Woo SJ, Zhou JA, Chung H, Kim SJ. Fabrication of pillar-shaped electrode arrays for artificial retinal implants. Sensors 2008;8:5845–5856.
  • Lee SW, Kim ET, Jang J, Jeong J, Chung H, Kim SJ. Flexible microelectrode arrays for retinal prostheses. Front Neurosci Conference Abstract, 2010
  • Ayton LN, Blamey PJ, Guymer RH, Luu CD, Nagayam DAX, Sinclair NC, et al. First in-human trial of a novel suprachoroidal retinal prosthesis. PloS One 2014;9:e1–e26.
  • Suaning GJ, Lovell NH, Lehmann T. Neuromodulation of the Retina from the Suprachoroidal Space: The Phoenix 99 Implant. IEEE Biomed Circuits Syst Conf 2014;256–259.
  • Villalobos J, Nagayam DAX, Allen PJ, McKelvie P, Luu CD, Ayton LN, et al. A wide-field suprachoroidal retinal prosthesis is stable and well tolerated following chronic implantation. Invest Ophthalmol Vis Sci 2013;54:3751–3762.
  • Abramian M, Lovell NH, Morley JW, Suaning GJ, Dokos S. Activation of retinal ganglion cells following epiretinal electrical stimulation with hexagonally arranged bipolar electrodes. J Neural Eng 2011;8:e1–e12.
  • Wong YT, Chen SC, Kerdraon YA, Allen PJ, McCombe MF, Morley JW, et al. Efficacy of supra-choroidal, bipolar, electrical stimulation in a vision prosthesis. Conf Proc IEEE Eng Med Biol Soc 2008:2008;1789–1792.
  • Nagayam DAX, Williams RA, Allen PJ, Shivdasani MN, Luu CD, Salinas-LaRosa CM, et al. Chronic electrical stimulation with a suprachoroidal retinal prosthesis: A preclinical safety and efficacy study. PLoS One 2014;9:e1–e21.
  • John SE, Shivdasani MN, Williams CE, Morley JW, Shepherd RK, Rathbone GD, et al. Suprachoroidal electrical stimulation: effects of stimulus pulse parameters on visual cortical responses. J Neural Eng 2013;10:1–12.
  • Cicione R, Shivdasani MN, Fallon JB, Luu CD, Allen PJ, Rathbone GD, et al. Visual cortex responses to suprachoroidal electrical stimulation of the retina: Effects of electrode return configuration. J Neural Eng 2012;9:1–14.
  • Ohta J, Noda T, Sasagawa K, Tokuda T. A CMOS microchip-based retinal prosthetic device for large numbers of stimulation in wide area. IEEE Trans Biomed Circuits Syst 2013;643–645.
  • Fujikado T, Kamei M, Sakaguchi H, Kanda H, Morimoto T, Ikuno Y, et al. Testing of semichronically implanted retinal prosthesis by suprachoroidal-transretinal stimulation in patients with retinitis pigmentosa. Invest Ophthalmol Vis Sci 2011;52:4726–4733.
  • Tokuda T, Asano R, Sugitani S, Teresawa Y, Nunoshita M, Nakauchi K, et al. In vivo Stimulation on Rabbit Retina using CMOS LSI-based Multi-Chip Flexible Stimulator for Retinal Prosthesis. Conf Proc IEEE Med Biol Soc 2007;2007:5791–5794.
  • “Nanoretina.” Nanoretina. N.p., n.d. Web. August 3, 2015. www.nanoretina.com
  • Yanovitz L, Raz-Prag D, Eden KO, Salni R, Hanein Y, Gefen R. Retinal responses evoked and recorded with 3D electrodes designated for a novel prosthetic device. Invest Ophthalmol Vis Sci 2014;55:ARVO E-Abstract 1808.
  • Raz-Prag D, Weinberger D, Gefen R. Implantation procedure for retinal prosthesis: adaptation of extracapsular cataract procedure. Invest Ophthalmol Vis Sci 2014;55:ARVO E-Abstract 1809.
  • Kaiho Y, Ohara Y, Takeshita H, Kiyoyama K, Lee KW, Tanaka T, et al. 3D Integration Technology for 3D Stacked Retinal Chip. IEEE 3D Syst Int (Conference). 2009;1–4.
  • Tanaka T, Sato K, Komiya K, Kobayashi T, Watanabe T, Fukushima T, et al. Fully Implantable Retinal Prosthesis Chip with Photodetector and Stimulus Current Generator. Int El Devices Meet 2007:1015–1018.
  • Fukushima T, Bea J, Murugesan M, Lee KW, Koyanagi M. Development of via-last 3D integration technologies using a new temporary adhesive system. IEEE 3DIC Conf Proc 2013;2013:1–4.
  • Fan LS. Toward a high visual-acuity retinal prosthesis. Transducers 2013;2013:738–743.
  • Yang CH, Fan LS, Yang F. Implantation of high-density, flexible CMOS imaging sensor retinal prosthesis in minipig eyes. Invest Ophthalmol Vis Sci 2013;54:ARVO E-Abstract 5099.
  • Lu YL, Yan Y, Chai XY, Ren QS, Chen Y, Li LM. Electrical stimulation with a penetrating optic nerve electrode array elicits visuotopic cortical responses in cats. J. Neural Eng 2013;10:1–11.
  • Brelen ME, Vince V, Gerard B, Veraart C, Delbeke J. Measurement of evoked potentials after electrical stimulation of the human optic nerve. Invest Ophthalmol Vis Sci 2010;51:5351–5355.
  • Marin C, Fernandez E. Biocompatibility of intracortical microelectrodes: Current status and future prospects. Front Neuroeng 2010;3:1–6.
  • Rush A, Suh S, Troyk PR. An inductive link for an intracortical visual prosthesis. Conf Proc IEEE Neur Eng 2011;1:503–507.
  • Mohamaddi HM, Ghafar-Zadeh E, Sawan M. An image processing approach for blind mobility facilitated through visual intracortical stimulation. Artif Organs 2012;36:616–628.
  • Brunton E, Lowery AJ, Rajan R. A comparison of microelectrodes for a visual cortical prosthesis using finite element analysis. Front Neuroeng 2012;5:1–11.
  • Lewis PM, Ackland HM, Lowery AJ, Rosenfeld JV. Restoration of vision in blind individuals using bionic devices: A review with a focus on cortical visual prostheses. Brain Res 2015;1595:51–73.
  • Veraart C, Raftopaulos C, Mortimer JT, Delbeke J, Pins D, Michaux G, et al. Visual sensations produced by optic nerve stimulation using an implanted self-sizing spiral cuff electrode. Brain Res 1998;813:181–186.
  • Pezaris JS, Eskandar EN. Getting signals into the brain: visual prosthetics through thalamic microstimulation. Neurosurg Focus 2009;27:1–16.
  • Sakaguchi H, Kamei M, Fujikado T, Yonezawa E, Ozawa M, Cecilia-Gonzalez C, et al. Artificial vision by direct optic nerve electrode (AV-DONE) implantation in a blind patient with retinitis pigmentosa. J Artif Organs 2009;12:206–209.
  • Sakaguchi H, Kamei M, Nishida K, Teresawa Y, Fujikado T, Ozawa M, et al. Implantation of a newly developed direct optic nerve electrode device for artificial vision in rabbits. J Artif Organs 2012;15:295–300.
  • Vurro M, Crowell AM, Pezaris JS. Simulation of thalamic prosthetic vision: reading accuracy, speed, and acuity in sighted humans. Front Hum Neurosci 2014:8;e1–e19.
  • Pezaris JS, Reid RC. Demonstration of artificial visual precepts generated through thalamic microstimulation. PNAS 2007;104:7670–7675.
  • Panetsos F, Sanchez-Jimenez A, Cerio ED, Diaz-Guemes I, Sanchez FM. Consistent phosphenes generated by electrical microstimulation of the visual thalamus. An experimental approach for thalamic visual neuroprostheses. Front Neurosci 2011;5:1–12.
  • Dobelle WH, Mladejovsky MG. Phosphenes produced by electrical stimulation of human occipital cortex, and their application to the development of a prosthesis for the blind. J Physiol 1974;243:553–576.
  • Dobelle WH, Mladejovsky MG, Girvin JP. Artificial vision for the blind: electrical stimulation of visual cortex offers hope for a functional prosthesis. Science 1974;183:440–444.
  • Tolstosheeva E, Gordillo-Gonzalez V, Biefeld V, Kempen L, Mandon S, Kreiter AK, et al. A multi-channel, flex-rigid ECoG microelectrode array for visual cortical interfacing. Sensors 2015;15:832–854.
  • Lauritzen T, Dorn JD, Greenberg RJ, Neysmith JM, Talbot NH, and Zhou DD. Cortical Visual Prosthesis. Second Sight Medical Products, Inc., assignee. Patent US9302107 B2. 5 Apr. 2016. Print.
  • Troyk P, Bak M, Berg J, Bradley D, Cogan S, Erickson R, et al. A model for intracortical visual prosthesis research. Artif Organs 2003;27:1005–1015.
  • Normann RA, Maynard EM, Rousche PJ, Warren DJ. A neural interface for a cortical vision prosthesis. Vis Res 1999;39:2577–2587.
  • Barrett JM, Berlinguer-Palmini R, Degenaar P. Optogenetic approaches to retinal prosthesis. Visual Neurosci 2014;31:345–354.
  • Tomita H, Sugano E, Isago H, Hiroi T, Wang Z, Ohta E, et al. Channelrhodopsin-2 gene transduced into retinal ganglion cells restores functional vision in genetically blind rats. Exp Eye Res. 2010;90:429–436.
  • Ivanova E, Pan ZH. Evaluation of the adeno-associated virus mediated long-term expression of channelrhodopsin-2 in the mouse retina. Mol Vis 2009;15:1680–1689.
  • Ivanova E, Hwang GS, Pan ZH, Troilo D. Evaluation of AAV-mediated expression of Chop2-GFP in the marmoset retina. Invest Ophthalmol Vis Sci 2010;51:5288–5296.
  • Nirenberg S, Pandarinath C. Retinal prosthetic strategy with the capacity to restore normal vision. PNAS 2011;109:15012–15017.
  • Busskamp V, Duebel J, Balya D, Fradot M, Viney TJ, Siegen S, et al. Genetic Reactivation of cone photoreceptors restores visual responses in retinitis pigmentosa. Science 2010;329:413–419.
  • Iezzi R, Finlayson PG. Neurotransmitter stimulation for retinal prosthesis: The artificial synapse chip. Visual prosthetics: Physiology, bioengineering, and rehabilitation. Dagniele G. New York: Springer; 2011:173–191. Print.
  • Finlayson PG, Iezzi R. Glutamate stimulation of retinal ganglion cells in normal and S334ter-4 rat retinas: A candidate for a neurotransmitter-based retinal prosthesis. Invest Ophthalmol Vis Sci 2010;51:3619–3628.
  • Inayat S, Rountree CM, Troy JB, Saggere L. Chemical stimulation of rat retinal neurons: feasibility of an epiretinal neurotransmitter-based prosthesis. J Neural Eng 2015;12:1–20.
  • Peterman MC, Noolandi J, Blumenkranz MS, Fishman HA. Localized chemical release from an artificial synapse chip. Proc Natl Acad Sci USA 2004;101:9951–9954.
  • Vu TQ, Chowdhury S, Muni NJ, Qian H, Standaert RF, Pepperberg DR. Activation of membrane receptors by a neurotransmitter conjugate designed for surface attachment. Biomaterials 2006:1895–1903.
  • Nau AC, Pintar C, Arnoldussen A, Fisher C. Acquisition of visual perception in blind adults using the brainport artificial vision device. Am J Occup Ther 2015:69;1–8.
  • Lee VK, Nau AC, Laymon C, Chan KC, Rosario BL, Fisher C. Successful tactile based visual sensory substitution use functions independently of visual pathway integrity. Front Hum Neurosci 2014;8:291.
  • Singh MS, MacLaren RE. Stem cells as a therapeutic tool for the blind: Biology and future prospects. Proc R Soc B 2011;278:3009–3016.
  • Naor O, Hertzberg Y, Zemel E, Kimmel E, Shoham S. Towards multifocal ultrasound neural stimulation II: design considerations for an acoustic retinal prosthesis. J Neural Eng 2012;9:1–11.
  • Yagi T, Watanabe M, Ohnishi Y, Okuma S, Mukai T. Biohybrid retinal implant: Research and development update in 2005. Conf Proc IEEE Neur Eng 2005;2005:5–8.
  • Leng T, Wu P, Mehenti NZ, Bent SF, Marmor MF, Blumenkranz MS, et al. Directed retinal nerve cell growth for use in a retinal prosthesis interface. Invest Ophthalmol Vis Sci 2004;45:4132–4137.
  • Humayun MS, Weiland JD, Fujii GY, Greenberg RJ, Williamson R, Little J, et al. Visual perception in a blind subject with a chronic microelectronic retinal prosthesis. Vis Res 2003;43:2573–2581.
  • Suaning GJ, Hallum LE, Chen SC, Preston PJ, Lovell NH. Phosphene vision: Development of a portable visual prosthesis system for the blind. Conf Proc Eng Med Biol Soc 2003;2003:2047–2051.
  • Caspi A, Dorn JD, McClure KH, Humayun MS, Greenberg RJ, McMahon MJ, et al. Feasibility study of a retinal prosthesis: Spatial vision with a 16-electrode implant. Arch Ophthalmol 2009;127:398–401.
  • Delbeke J, Wanet-Defalque MC, Gerard B, Troosters M, Michaux G, Veraart C. The microsystems based visual prosthesis approach for optic nerve stimulation. Artif Org 2002;26:232–234.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.