151
Views
2
CrossRef citations to date
0
Altmetric
Retina

Ocular Safety of Intravitreal Connective Tissue Growth Factor Neutralizing Antibody

, , , , , , & show all
Pages 1194-1201 | Received 03 Jul 2016, Accepted 17 Feb 2017, Published online: 11 May 2017

References

  • Wiedemann P, Yandiev Y, Hui Y, Wang Y. Pathogenesis of proliferative vitreoretinopathy. In Ryan SJJ Ed). Retina. 5th ed. St Louis, MO: Mosby; 2013, pp. 1640–1645.
  • Leask A, Abraham DJ. The role of connective tissue growth factor, a multifunctional matricellular protein, in fibroblast biology. Biochem Cell Biol 2003;81:355–363.
  • De Winter P, Leoni P, Abraham D. Connective tissue growth factor: structure-function relationships of a mosaic, multifunctional protein. Growth Factors 2008 Apr;26(2):80–91.
  • Van Setten GB, Blalock TD, Grotendorst G, Schultz GS. Detection of connective tissue growth factor in human aqueous humor. Ophthalmic Res 2002;34:306–308.
  • Van Setten GB, Blalock TD, Grotendorst G, Schultz GS. Detection of connective tissue growth factor (CTGF) in human tear fluid: preliminary results. Acta Ophthalmol Scand 2003;81:51–53.
  • Abu El-Asrar AM, Imtiaz NM, Kangave D, Siddiquei MM, Geboes K. Osteopontin and other regulators of angiogenesis and fibrogenesis in the vitreous from patients with proliferative vitreoretinal disorders. Mediators Inflamm 2012;2012:493043.
  • Hinton D, Spee Ch, He Sh, Weitz S, Usinger W, LaBree L, et al. Accumulation of NH-terminal fragment of connective tissue growth factor in the vitreous of patients with proliferative diabetic retinopathy. Diabetes Care 2004;27:758–764.
  • Kuiper EJ, de Smet MD, van Meurs JC, Tan HS, Tanck MW, Oliver N, et al. Association of connective tissue growth factor with fibrosis in vitreoretinal disorders in the human eye. Archf Ophthalmol 2006;1457–1462.
  • Pastor JC, Rojas J, Pastor-Idoate S, Di Lauro S, Gonzalez-Buendia L, Delgado-Tirado S. Proliferative vitreoretinopathy: a new concept of disease pathogenesis and practical consequences. Prog Retin Eye Res. 2016 Mar;51:125–55.
  • Zhou G, Li C, Cai L. Advanced glycation end-products induce connective tissue growth factor-mediated renal fibrosis predominantly through transforming growth factor beta independent pathway. Am J Pathol 2004;165:2033–2043.
  • Kuiper EJ, van Zijderveld R, Roestenberg P, Lyons KM, Goldschmeding R, Klaassen I, et al. Connective tissue growth factor is necessary for retinal capillary basal lamina thickening in diabetic mice. J Histochem Cytochem 2008;56:785–792.
  • Van Geest RJ, Lesnik-Oberstein SY, Tan HS, Mura M, Goldschmeding R, Van Noorden CJ, et al. A shift in the balance of VEGF and CTGF by bevacizumab causes the angio-fibrotic switch in proliferative diabetic retinopathy. Br J Ophthalmol 2012;96:587–590.
  • Kuiper EJ, Van Nieuwenhoven FA, de Smet MD, van Meurs JC, Tanck MW, Oliver N, et al. The angio-fibrotic switch of VEGF and CTGF in proliferative diabetic retinopathy. PLoS One 2008 Jul 16;3(7):e2675.
  • Hinton DR, He S, Jin ML, Barron E, Ryan SJ. Novel growth factors involved in the pathogenesis of proliferative vitreoretinopathy. Eye (Lond) 2002 Jul;16(4):422–428.
  • Bagheri A, Soheili Z, Ahmadieh H, Samiei S, Sheibani N, Astaneh SD, et al. Simultaneous application of bevacizumab and anti-CTGF antibody effectively suppresses proangiogenic and profibrotic factors in human RPE cells. ‎Mol Vis 2015;21:378–390.
  • Hu B, Zhang Y, Zeng Q, Han Q, Zhang L, Liu M, et al. Intravitreal injection of ranibizumab and CTGF shRNA improves retinal gene expression and microvessel ultrastructure in a rodent model of diabetes. Int J Mol Sci 2014;15:1606–1624.
  • Li G, Xie Q, Shi Y, Zhang M, Jiang S, Zhou H, et al. Inhibition of connective tissue growth factor by siRNA prevents liver fibrosis in rats. J Gene Med 2006 Jul;8(7):889–900.
  • Wang X, Wu G, Gou L, Liu Z, Wang X, Fan X, et al. A novel single-chain-Fv antibody against connective tissue growth factor attenuates bleomycin-induced pulmonary fibrosis in mice. Respirology 2011;16:500–507
  • https://www.peprotech.com/en-GB/Pages/Product/Anti-Human_CTGF/500-P252.
  • Pascal D, Sébastien B, Maurice M. Quantitative analysis of intravitreal injections in the rat. Curr Eye Res 2001;22(1):74–77.
  • Chiu K, Chang RC, So KF. Intravitreous injection for establishing ocular diseases model. J Vis Exp 2007;(8):313.
  • Nourinia R, Rezaei Kanavi M, Kaharkaboudi A, Taghavi SI, Aldavood SJ, Darjatmoko SR, et al. Ocular safety of intravitreal propranolol and its efficacy in attenuation of choroidal neovascularization. Invest Ophthalmol Vis Sci 2015 Dec 1;56(13):8228–8235.
  • Yoshimura N. Retinal neuronal cell death: molecular mechanism and neuroprotection. Nippon Ganka Gakkai Zasshi 2001 Dec;105(12):884–902.
  • Yamamoto T, Kamei M, Kunavisarut P, Suzuki M, Tano Y. Increased retinal toxicity of intravitreal tissue plasminogen activator in a central retinal vein occlusion model. Graefes Arch Clin Exp Ophthalmol 2008 Apr;246(4):509–514.
  • Schlichtenbrede FC, Mittmann W, Rensch F, Vom Hagen F, Jonas JB, Euler T. Toxicity assessment of intravitreal triamcinolone and bevacizumab in a retinal explant mouse model using two-photon microscopy. Invest Ophthalmol Vis Sci 2009 Dec;50(12):5880–5887.
  • Yang H, Chen X, Liu Z, Liu J. CTGF siRNA ameliorates retinal cells apoptosis in streptozocin-induced diabetic rats. Int J Ophthalmol 2010;3(2):120–124.
  • Lo AC, Woo TT, Wong RL, Wong D. Apoptosis and other cell death mechanisms after retinal detachment: implications for photoreceptor rescue. Ophthalmologica 2011;226 Suppl 1: 10–17. Epub 2011 Jul 22.
  • Juric V, Chen CC, Lau LF. Fas-mediated apoptosis is regulated by the extracellular matrix protein CCN1 (CYR61) in vitro and in vivo. Mol Cell Biol 2009 Jun;29(12):3266–3279.
  • Borkham-Kamphorst E, Schaffrath C, Van de Leur E, Haas U, Tihaa L, Meurer SK, et al. The anti-fibrotic effects of CCN1/CYR61 in primary portal myofibroblasts are mediated through induction of reactive oxygen species resulting in cellular senescence, apoptosis and attenuated TGF-β signaling. Biochim Biophys Acta 2014 May;1843(5):902–914.
  • Lai CF, Chen YM, Chiang WC, Lin SL, Kuo ML, Tsai TJ. Cysteine-rich protein 61 plays apro-inflammatory role in obstructive kidney fibrosis. PLoS One 2013; 8:e56481.
  • Falke LL, Goldschmeding R, Nguyen TQ. A perspective on anti-CCN2 therapy for chronic kidney disease. Nephrol Dial Transplant 2014 Feb;29 Suppl 1:i30–i37.
  • Jun JI, Lau LF. The matricellular protein CCN1 induces fibroblast senescence and restricts fibrosis in cutaneous wound healing. Nat Cell Biol 2010;12:676–685.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.