364
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Microvascular Network and Its Endothelial Cells in the Human Iris

, , , &

References

  • Sun X, Dai Y, Chen Y, Yu DY, Cringle SJ, Chen J, Kong X, Wang X, Jiang C., Primary angle closure glaucoma: What we know and what we don’t know. Prog Retin Eye Res. 2017;57:26–45. DOI:10.1016/j.preteyeres.2016.12.003.
  • Sayin N, Kara N, Pekel G. Ocular complications of diabetes mellitus. World J Diabetes. 2015;6(1):92–108. doi:10.4239/wjd.v6.i1.92.
  • Heald K, Langham ME. Permeability of the cornea and the blood-aqueous barrier to oxygen. Br J Ophthalmol. 1956;40(12):705–20. doi:10.1136/bjo.40.12.705.
  • Ballabh P, Braun A, Nedergaard M. The blood-brain barrier: an overview: Structure, regulation, and clinical implications. Neurobiol Dis. 2004;16(1):1–13. doi:10.1016/j.nbd.2003.12.016.
  • Tousimis AJ, Fine BS. Ultrastructure of the iris: The intercellular stromal components. Arch Ophthalmol. 1959;62:974–76. doi:10.1001/archopht.1959.04220060046008.
  • Vrabec F. [The anterior superficial endothelium of the human iris]. Ophthalmologica. 1952;123(1):20–30. doi:10.1159/000301125.
  • Hogan MJ, Alvarado JA, Weddell JE. Histology of the human eye: an Atlas and textbook. Philadelphia: W.B. Saunders Company; 1971. p. 1971.
  • Tasman WS, Jaeger EA. Duane’s ophthalmology. Philadelphia, United States: Lippincott Williams and Wilkins; 2006.
  • Wilson WS, Barany E. Iris delay, a neglected factor in aqueous humour dynamics. A study in the cynomolgus monkey (Macaca fascicularis). Exp Eye Res. 1983;37(3):293–301. doi:10.1016/0014-4835(83)90164-1.
  • Cunha-Vaz J. The blood-ocular barriers. Surv Ophthalmol. 1979;23(5):279–96. doi:10.1016/0039-6257(79)90158-9.
  • Barbazetto IA, Liang J, Chang S, Zheng L, Spector A, Dillon JP. Oxygen tension in the rabbit lens and vitreous before and after vitrectomy. Exp Eye Res. 2004;78(5):917–24. doi:10.1016/j.exer.2004.01.003.
  • Siegfried CJ, Shui YB, Holekamp NM, Bai F, Beebe DC. Oxygen distribution in the human eye: Relevance to the etiology of open-angle glaucoma after vitrectomy. Invest Ophthalmol Vis Sci. 2010;51(11):5731–38. doi:10.1167/iovs.10-5666.
  • Hoper J, Funk R, Zagorski Z, Rohen JW. Oxygen delivery to the anterior chamber of the eye: A novel function of the anterior iris surface. Curr Eye Res. 1989;8(7):649–59. doi:10.3109/02713688909025799.
  • Kleinstein RN, Kwan M, Fatt I, Weissman BA. In vivo aqueous humor oxygen tension–as estimated from measurements on bare stroma. Invest Ophthalmol Vis Sci. 1981;21(3):415–21.
  • Tan PE, Yu PK, Cringle SJ, Yu DY. Quantitative assessment of the human retinal microvasculature with or without vascular comorbidity. Invest Ophthalmol Vis Sci. 2014;55(12):8439–52. doi:10.1167/iovs.14-15056.
  • Izzotti A, Bagnis A, Sacca SC. The role of oxidative stress in glaucoma. Mutat Res. 2006;612(2):105–14. doi:10.1016/j.mrrev.2005.11.001.
  • Holekamp NM, Shui YB, Beebe DC. Vitrectomy surgery increases oxygen exposure to the lens: A possible mechanism for nuclear cataract formation. Am J Ophthalmol. 2005;139(2):302–10. doi:10.1016/j.ajo.2004.09.046.
  • Shui YB, Fu JJ, Garcia C, Dattilo LK, Rajagopal R, McMillan S, Mak G, Holekamp NM, Lewis A, Beebe DC., Oxygen distribution in the rabbit eye and oxygen consumption by the lens. Invest Ophthalmol Vis Sci. 2006;47(4):1571–80. doi:10.1167/iovs.05-1475.
  • Truscott RJ. Age-related nuclear cataract-oxidation is the key. Exp Eye Res. 2005;80(5):709–25. doi:10.1016/j.exer.2004.12.007.
  • Chang S. LXII Edward Jackson lecture: Open angle glaucoma after vitrectomy. Am J Ophthalmol. 2006;141(6):1033–43. doi:10.1016/j.ajo.2006.02.014.
  • Luk FO, Kwok AK, Lai TY, Lam DS. Presence of crystalline lens as a protective factor for the late development of open angle glaucoma after vitrectomy. Retina. 2009;29(2):218–24. doi:10.1097/IAE.0b013e31818ba9ca.
  • Izzotti A, Sacca SC, Longobardi M, Cartiglia C. Sensitivity of ocular anterior chamber tissues to oxidative damage and its relevance to the pathogenesis of glaucoma. Invest Ophthalmol Vis Sci. 2009;50(11):5251–58. doi:10.1167/iovs.09-3871.
  • Sacca SC, Pascotto A, Camicione P, Capris P, Izzotti A. Oxidative DNA damage in the human trabecular meshwork: Clinical correlation in patients with primary open-angle glaucoma. Arch Ophthalmol. 2005;123(4):458–63. doi:10.1001/archopht.123.4.458.
  • Wang PX, Koh VT, Loon SC. Laser iridotomy and the corneal endothelium: A systemic review. Acta Ophthalmol. 2014;92:604–16. doi:10.1111/aos.12367.
  • Youm JH, Heo JH, Kim HM, Song JS. Effects of argon laser iridotomy on the corneal endothelium of pigmented rabbit eyes. Korean J Ophthalmol. 2014;28(1):76–82. doi:10.3341/kjo.2014.28.1.76.
  • Aptel F, Chiquet C, Beccat S, Denis P. Biometric evaluation of anterior chamber changes after physiologic pupil dilation using Pentacam and anterior segment optical coherence tomography. Invest Ophthalmol Vis Sci. 2012;53(7):4005–10. doi:10.1167/iovs.11-9387.
  • Ganeshrao SB, Mani B, Ulganathan S, Shantha B, Vijaya L. Change in iris parameters with physiological mydriasis. Optom Vis Sci. 2012;89(4):483–88. doi:10.1097/OPX.0b013e31824c3731.
  • Zhang Y, Li SZ, Li L, He MG, Thomas R, Wang NL. Quantitative analysis of iris changes following mydriasis in subjects with different mechanisms of angle closure. Invest Ophthalmol Vis Sci. 2015;56(1):563–70. doi:10.1167/iovs.14-15216.
  • Dejana E, Vestweber D. The role of VE-cadherin in vascular morphogenesis and permeability control. Prog Mol Biol Transl Sci. 2013;116:119–44.
  • Giannotta M, Trani M, Dejana E. VE-cadherin and endothelial adherens junctions: Active guardians of vascular integrity. Dev Cell. 2013;26(5):441–54. doi:10.1016/j.devcel.2013.08.020.
  • Nagy JA, Benjamin L, Zeng H, Dvorak AM, Dvorak HF. Vascular permeability, vascular hyperpermeability and angiogenesis. Angiogenesis. 2008;11(2):109–19. doi:10.1007/s10456-008-9099-z.
  • Sukriti S, Tauseef M, Yazbeck P, Mehta D. Mechanisms regulating endothelial permeability. Pulm Circ. 2014;4(4):535–51. doi:10.1086/677356.
  • Yang H, Yu PK, Cringle SJ, Sun X, Yu DY. Intracellular cytoskeleton and junction proteins of endothelial cells in the porcine iris microvasculature. Exp Eye Res. 2015;140:106–16. doi:10.1016/j.exer.2015.08.025.
  • Tuma RF, Duran WN, Ley K. Handbook of physiology: microcirculation. 2nd ed. San Diego: Academic Press (Elsevier); 2008.
  • Yang H, Yu PK, Cringle SJ, Sun X, Yu DY. Quantitative study of the microvasculature and its endothelial cells in the porcine iris. Exp Eye Res. 2015;132C:249–58. doi:10.1016/j.exer.2015.02.006.
  • Yu PK, Balaratnasingam C, Cringle SJ, McAllister IL, Provis J, Yu DY. Microstructure and network organization of the microvasculature in the human macula. Invest Ophthalmol Vis Sci. 2010;51(12):6735–43. doi:10.1167/iovs.10-5415.
  • Kang MH, Balaratnasingam C, Yu P, Morgan WH, McAllister IL, Cringle SJ, Yu DY, Morphometric characteristics of central retinal artery and vein endothelium in the normal human optic nerve head. Invest Ophthalmol Vis Sci. 2011;52:1359–67. doi:10.1167/iovs.10-6366.
  • Chiu JJ, Wang DL, Chien S, Skalak R, Usami S. Effects of disturbed flow on endothelial cells. J Biomech Eng. 1998;120(1):2–8. doi:10.1115/1.2834303.
  • Chiu JJ, Chien S. Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. Physiol Rev. 2011;91(1):327–87. doi:10.1152/physrev.00047.2009.
  • Chiu JJ, Usami S, Chien S. Vascular endothelial responses to altered shear stress: Pathologic implications for atherosclerosis. Ann Med. 2009;41(1):19–28. doi:10.1080/07853890802186921.
  • Yu DY, Yu PK, Cringle SJ, Kang MH, Su EN. Functional and morphological characteristics of the retinal and choroidal vasculature. Prog Retin Eye Res. 2014;40:53–93. doi:10.1016/j.preteyeres.2014.02.001.
  • Aird WC. Endothelial cell heterogeneity. Crit Care Med. 2003;31(4 Suppl):S221–S30. doi:10.1097/01.CCM.0000057847.32590.C1.
  • Aird WC, Rosenberg RD. Vascular endothelium: physiology, pathology, and therapeutic opportunities. New York: Schattauer; 1997.
  • Aird WC. Endothelial biomedicine. New York: Cambridge University Press; 2007.
  • Aird WC. Spatial and temporal dynamics of the endothelium. J Thromb Haemost. 2005;3(7):1392–406. doi:10.1111/jth.2005.3.issue-7.
  • Aird WC. Phenotypic heterogeneity of the endothelium: II. Representative vascular beds. Circ Res. 2007;100(2):174–90. doi:10.1161/01.RES.0000255690.03436.ae.
  • Aird WC. Endothelial cell heterogeneity. Cold Spring Harb Perspect Med. 2012;2(1):a006429–a006429. doi:10.1101/cshperspect.a006429.
  • Regan ER, Aird WC. Dynamical systems approach to endothelial heterogeneity. Circ Res. 2012;111(1):110–30. doi:10.1161/CIRCRESAHA.111.261701.
  • Yu PK, Tan PE, Morgan WH, Cringle SJ, McAllister IL, Yu DY. Age-related changes in venous endothelial phenotype at human retinal artery-vein crossing points. Invest Ophthalmol Vis Sci. 2012;53(3):1108–16. doi:10.1167/iovs.11-8865.
  • Yu PK, Tan PE, Cringle SJ, McAllister IL, Yu DY. Phenotypic heterogeneity in the endothelium of the human vortex vein system. Exp Eye Res. 2013;115C:144–52. doi:10.1016/j.exer.2013.07.006.
  • Yu PK, Cringle SJ, Yu DY. Quantitative study of age-related endothelial phenotype change in the human vortex vein system. Microvasc Res. 2014;94:64–72. doi:10.1016/j.mvr.2014.05.004.
  • Pham TT, Maenz S, Ludecke C, Schmerbauch C, Settmacher U, Jandt KD, Bossert J, Zanow J., Quantitative characterization of endothelial cell morphologies depending on shear stress in different blood vessels of domestic pigs using a focused ion beam and high resolution scanning electron microscopy (FIB-SEM). Tissue Cell. 2015;47(2):205–12. doi:10.1016/j.tice.2014.12.005.
  • Sajja RK, Prasad S, Cucullo L. Impact of altered glycaemia on blood-brain barrier endothelium: An in vitro study using the hCMEC/D3 cell line. Fluids Barriers CNS. 2014;11(1):8. doi:10.1186/2045-8118-11-8.
  • Kohn JC, Chen A, Cheng S, Kowal DR, King MR, Reinhart-King CA. Mechanical heterogeneities in the subendothelial matrix develop with age and decrease with exercise. J Biomech. 2016;49(9):1447–53. doi:10.1016/j.jbiomech.2016.03.016.
  • Kohn JC, Lampi MC, Reinhart-King CA. Age-related vascular stiffening: Causes and consequences. Front Genet. 2015;6:112. doi:10.3389/fgene.2015.00112.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.